Rising levels of temperature and \(\text{CO}_2\) antagonistically affect phytoplankton primary productivity in the South China Sea

Yong Zhang, Tifeng Wang, He Li, Nanou Bao, Jason M. Hall-Spencer, Kunshan Gao

A R T I C L E I N F O

Keywords:
Chl \(a\)
Night time respiration
Ocean acidification
Ocean warming
Primary productivity
South China Sea

A B S T R A C T

Coastal and offshore waters in the South China Sea are warming and becoming acidified due to rising atmospheric levels of carbon dioxide (\(\text{CO}_2\)), yet the combined effects of these two stressors are poorly known. Here, we carried out shipboard incubations at ambient (398 \(\mu\text{atm}\)) and elevated (934 \(\mu\text{atm}\)) \(\text{pCO}_2\) at 2 stations at ambient temperatures. Both warming and increased \(\text{CO}_2\) levels individually increased phytoplankton productivity at all stations, but combinations of high temperature and high \(\text{CO}_2\) did not, reflecting an antagonistic effect. Warming decreased Chl \(a\) concentrations in offshore waters at ambient \(\text{CO}_2\), but had no effect in the coastal waters. High \(\text{CO}_2\) treatment increased night-time respiration in the coastal areas at ambient temperatures. Our findings show that phytoplankton assemblage responses to rising temperature and \(\text{CO}_2\) levels differ between coastal and offshore areas. While it is difficult to predict how ongoing warming and acidification will influence primary productivity in the South China Sea, our data imply that predicted increases in temperature and \(\text{pCO}_2\) will not boost surface phytoplankton primary productivity.

1. Introduction

Rising atmospheric \(\text{CO}_2\) concentrations are warming and acidifying the oceans worldwide (Caldeira and Wickett, 2003; IPCC, 2014), including the South China Sea (Ji et al., 2017). On average, surface seawater temperatures are projected to increase by 1.51–3.22 \(^\circ\text{C}\) by the end of this century and \(\text{CO}_2\) levels to increase from \(400\) to \(1000 \mu\text{atm}\) (Boyd et al., 2015). Ocean warming and acidification are expected to affect the physiology, distribution, and structure of phytoplankton communities (Hare et al., 2007; Feng et al., 2009; Taucher et al., 2012; Sommer et al., 2015; Riebesell et al., 2017).

Rising \(\text{CO}_2\) levels can increase the availability of dissolved inorganic carbon (DIC) for phytoplankton carbon fixation, but they are also causing seawater acidification, and this may inhibit algal calcification and photosynthetic carbon fixation (Falkowski and Raven, 2007; Gao and Zheng, 2010; Gao et al., 2012; Brodie et al., 2014). Thus, algal responses to increasing \(\text{CO}_2\) levels are dependent on the balance between the positive effects of increasing DIC and the negative effects of decreasing pH (Wu et al., 2008; Bach et al., 2015; Liu et al., 2017). Several studies report that, in comparison to current \(\text{CO}_2\) levels, elevated \(\text{CO}_2\) (800–1000 \(\mu\text{atm}\)) increases productivity of phytoplankton assemblages that are dominated by diatoms (Kim et al., 2006; Tortell et al., 2008; Domingues et al., 2014; Engel et al., 2014; Johnson et al., 2015). Others have found that rising \(\text{CO}_2\) levels can decrease the productivity of phytoplankton communities dominated by the coccolithophore Emiliania huxleyi (Delille et al., 2005; Riebesell et al., 2017). Paradoxically, an increase in \(\text{CO}_2\) concentrations from 385 to 800 \(\mu\text{atm}\) decreased the productivity of surface phytoplankton assemblages dominated by diatoms in the South China Sea under natural fluctuating solar radiation (Gao et al., 2012). These discrepancies highlight the fact that the effects of rising \(\text{CO}_2\) on C-fixation are dependent on algal community composition as well as regional environmental conditions (Egge et al., 2009; Gao et al., 2012; Cals-Pla et al., 2015; Holding et al., 2015; Hoppe et al., 2018).

On a global scale, by using satellite records and in situ monitoring, rising temperatures have been shown to reduce phytoplankton productivity in the open ocean (Boyce et al., 2010; Siegel et al., 2013),...
because increased thermal stratification of the water column can starve the algae of nutrients (Doney, 2006; Kletou and Hall-Spencer, 2012). In general, it seems that photosynthetic C-fixation increases with increasing temperature, reaches a maximum and decreases thereafter (Beardall and Raven, 2004). Optimal temperatures for C-fixation differ between latitudes and seasons, with small phytoplankton species functioning optimally at higher temperatures than larger species (Daufresne et al., 2009; Finkel et al., 2010; Sommer et al., 2015; Wolf et al., 2017). Carbon fixation was reduced when temperatures were experimentally increased in cold adapted phytoplankton assemblages (Wohlers et al., 2009; Wolf et al., 2017). However, increases from 27 °C to 30 °C enhanced photosynthetic C-fixation in incubations of samples of surface phytoplankton assemblages from two stations off China (Gao et al., 2017). Regional differences in physicochemical conditions may drive different responses of phytoplankton to ocean climate change.

Temperature affects cellular membrane permeability, cell size of a single phytoplankton cell and the uptake of dissolved inorganic carbon (Beardall and Raven, 2004) and so has fundamental control over the effects of changing carbonate chemistry on photosynthetic C-fixation. For example, when CO₂ concentrations were increased from 390 to 690 μm, C-fixation of a phytoplankton community at 12 °C (in situ temperature) decreased in the North Atlantic spring bloom area, whereas at 16 °C rising CO₂ levels enhanced C-fixation (Feng et al., 2009). Increasing CO₂ levels (from 150 to 300 μm) combined with rising temperature (from −1 °C to 7 °C) synergistically enhanced phytoplankton productivity in the European Arctic Ocean, and the positive effect of rising CO₂ on productivity was lower at 6 °C than at 1 °C (Holding et al., 2015). Furthermore, elevated temperature reversed the positive effect of rising CO₂ on phytoplankton assemblages off Svalbard and did not affect the response of phytoplankton primary productivity in coastal Arctic and subarctic seawater to rising CO₂ (Coello-Camba et al., 2014; Hoppe et al., 2018). These results show that rising temperature and increasing CO₂ can have synergistic or antagonistic effects on the productivity of marine phytoplankton assemblages. Given that the carbon cycle underpins the ecology and fisheries productivity of marine ecosystems, region-specific research is urgently needed to assess whether rising atmospheric CO₂ levels will positively or negatively affect photosynthetic production.

In this work, we performed shipboard incubations at two coastal and two offshore stations in the western South China Sea in autumn 2017 and measured photosynthetic C-fixation rates and Chlorophyll a (Chl a) concentrations. Our aim was to assess how rising levels of pCO₂ and temperature are likely to affect coastal and offshore productivity in the South China Sea.

2. Materials and methods

2.1. Sampling and culture condition

This study was carried out aboard RV ‘Shiyan III’ in offshore and coastal waters of the South China Sea from 11th September to 12th October, 2017 (Fig. 1). Surface seawater (0–2 m) was collected with an 8 L acid-cleaned plastic bucket and stored in a 30 L acid-cleaned polycarbonate tank at 9:00 a.m. to 10:00 a.m., at station S1 (12.99° N, 113.50° E) on September 21, station S2 (14.01° N, 113.01° E) on September 22, station S3 (17.75° N, 110.65° E) on October 2, and station S4 (18.30° N, 111.29° E) on October 3, respectively. Surface seawater at each station was filtered through a 200 μm mesh, and then dispensed into twelve 2 L Nalgene bottles. 1 μmol L⁻¹ NaNO₃ and 0.5 μmol L⁻¹ NaH₂PO₄ was added into the seawater in all treatments to stimulate phytoplankton growth (Chen et al., 2004; Tseng et al., 2005; Celis-Plà et al., 2015).

Six bottles for ambient temperature treatment were put into one deck incubator (120 cm × 85 cm × 25 cm) bathed with flowing surface seawater. Six bottles for the elevated temperature treatment were put into another deck incubator with an auto-temperature control system...
elevated CO₂ (∼1000 μatm) during the incubation periods, respectively. The high CO₂ concentration was controlled using a CO₂ enricher (CE1008, Wuhan Ruihua Instrument & Equipment Ltd., China). An Eldonet broadband filter radiometer (ELDONET, Real Time Computer, Germany) was used to measure the incident solar radiation (Fig. 2B), and solar light intensities and weather condition were similar during the incubation periods. The positions of the bottles were changed three times per day to ensure they were exposed equally to sunlight. Our four treatments were: low temperature and low CO₂ (LTLC), low temperature and high CO₂ (LTHC), high temperature and low CO₂ (HTLC), high temperature and high CO₂ (HTHC). Each treatment had three replicates and the incubations were run for 6 days.

2.2. pHₘₐₛ total alkalinity and nutrient concentrations measurements

pHₘₐₛ (NBS scale) was measured before incubation, 24 h after incubation and at the end of the 6 days experiment. At about 10:00 a.m., 20 mL samples for pHₘₐₛ measurements were taken from the bottles and measured immediately at 25°C with a pH meter (Benchtop pH, Orion 8102BN) calibrated with an equimolar pH buffer (Tris·HCl, Hanna) which is isosmotic with seawater (Dickson, 1993). Total alkalinity (TA) was measured before incubation and at the end of the incubation. At 10:00 a.m. to 10:30 a.m., 100 mL samples for TA measurements were filtered (GF/F filter) by gentle pressure with 200 mbar in the pump (GM-0.5A, JINTENG). 100 μL saturated HgCl₂ solution was added into the TA samples which were stored at 4°C. TA was measured at 25°C in the laboratory by potentiometric titration (AS-ALK1+, Apollo SciTech) according to Dickson et al. (2003). Carbonate chemistry parameters were calculated from TA, pHₘₐₛ, phosphate, silicate, temperature, and salinity using the CO2SYS (Pierrot et al., 2006).

At the beginning of the incubation, dissolved inorganic nitrogen (DIN) and phosphate (DIP) concentrations of seawater in situ were obtained from the dataset of this cruise. At the end of the incubation, at 10:30 a.m. to 11:00 a.m., 50 mL samples for determination of DIN and DIP concentrations were syringe-filtered (0.22 μm pore size, Haining), stored at ~20°C, measured using a scanning spectrophotometer (Du 800, Beckman Coulter) in the laboratory after the nitrate had been reduced to nitrite according to Hansen and Koroleff (1999).

2.3. Chlorophyll a analysis

At each station, at about 14:00 p.m., 2 L surface seawater were filtered onto a GF/F glass filter (25 mm, Whatman) for in situ chlorophyll a (Chl a) measurement. At the end of incubation, at 11:00 a.m. to 12:00 a.m., 700 mL samples were filtered onto GF/F glass filters, and all filters were stored at ~20°C until they were analyzed in the laboratory. The filters were placed in 5 mL 100% methanol and stored at 4°C for 12 h. Then the solutions were centrifuged at 5000 g for 10 min and the absorbances of the supernatant were determined using a scanning spectrophotometer (Du 800, Beckman Coulter). Chl a concentrations were determined as follows: Chl a = 13.27 × (A₆₆₃ − A₇₅₀) − 2.68 × (A₆₃₃ − A₇₅₀) (μg mL⁻¹) (Ritchie, 2006). A₆₆₃, A₇₅₀, and A₆₃₃ represent absorbances of the supernatant at 632 nm, 665 nm and 750 nm.

2.4. Primary productivity measurements

Primary productivity was obtained according to the method described by Gao et al. (2017). On the final day of the incubations, at about 5:00 a.m., subsamples were taken from each incubation bottle, dispersed into two 50 mL quartz tubes placed under a plastic plate which allowed 85% PAR and non UVR transmissions, assuring that the light environment was similar to that of incubations. 5 μCi (0.185 MBq) NaH¹⁴CO₃ (ICN Radiochemical, USA) was added to the subsamples, which were cultured in the corresponding deck incubators for 12 h (from 6:00 a.m. to 6:00 p.m.) and 24 h (from 6:00 a.m. to 6:00 a.m. next day) under solar radiation. Subsamples were then filtered onto GF/F glass filters, which were darkly stored at ~20°C until they were analyzed in the laboratory. Each filter was put into a 10 mL scintillation vial, fumed with HCl for 24 h to remove inorganic carbon, and dried at 60°C for 12 h. 3 mL scintillation cocktail (Hisafe 3, Perkin Elmer, Shelton, USA) was added to the vial and the activity of the fixed radiocarbon was measured using a liquid scintillation counting (LS 6500, Beckman Coulter, USA). The activity of photosynthetic C-fixation during 12 h incubation was defined to be the day-time primary productivity (DPP), and the photosynthetic C-fixation during 24 h was considered to be the net primary productivity (NPP) (Delille et al., 2005). The difference between DPP and NPP was taken as night time respiratory C loss.

2.5. Data analysis

Effects of temperature, CO₂ and their interactions on Chl a, DPP, NPP and night time respiration rates were assessed by a two-way analysis of variance (ANOVA). The normal distribution of all data was assessed by a Shapiro-Wilk’s test, and homogeneity of variance was determined by a Levene’s test. A Tukey Post hoc test (Tukey HSD) was performed to show difference between temperature or CO₂ treatments. Statistical analysis was tested by using R and significant difference was indicated by p < 0.05.

3. Results

3.1. Incubation temperature, nutrient concentrations and carbonate chemistry parameters

Incubation temperatures varied from 29.1°C to 31.2°C in our low temperature treatment (to match the surface seawater temperature at the time of sampling), and varied from 30.6°C to 34.0°C in our high temperature treatment (Fig. 2A). Average temperatures were 29.7 ± 0.29°C for the low temperature treatments and 31.5 ± 0.41°C for the high temperature treatments, respectively.

Dissolved inorganic nitrogen (DIN) and phosphate (DIP) concentrations in situ surface water of the South China Sea were 0.03–0.12 μmol L⁻¹ and 0.14–0.21 μmol L⁻¹, respectively (Table 1). By adding NaNO₃ and NaH₂PO₄ to the seawater, DIN and DIP concentrations at the beginning of the incubation were 1.03–1.12 μmol L⁻¹ and 0.64–0.71 μmol L⁻¹, respectively. DIN concentrations at all treatments decreased below the detection limit (< 0.04 μmol L⁻¹) and DIP concentrations were about 0.05 μmol L⁻¹ at the end of the experiments. This means that DIN and DIP concentrations appeared to be replete at the beginning of incubations, and low DIN concentration could have limited the phytoplankton abundance at the end of incubations.

CO₂ concentrations were 354–439 μatm at low CO₂ levels and were 804–1059 μatm at high CO₂ levels (Table 2). Correspondingly, pHₘₐₛ values were 8.17–8.25 at low CO₂ levels, and 7.85–7.95 at high CO₂ levels.

Table 1

<table>
<thead>
<tr>
<th>DIN (μmol L⁻¹)</th>
<th>DIP (μmol L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 Before culture</td>
<td>1 (0.08)</td>
</tr>
<tr>
<td>After culture</td>
<td>ND</td>
</tr>
<tr>
<td>S2 Before culture</td>
<td>1 (0.03)</td>
</tr>
<tr>
<td>After culture</td>
<td>ND</td>
</tr>
<tr>
<td>S3 Before culture</td>
<td>1 (0.03)</td>
</tr>
<tr>
<td>After culture</td>
<td>ND</td>
</tr>
<tr>
<td>S4 Before culture</td>
<td>1 (0.12)</td>
</tr>
<tr>
<td>After culture</td>
<td>ND</td>
</tr>
</tbody>
</table>
levels. Total alkalinitiess ranged 2319–2381 μmol L\(^{-1}\) in all treatments.

3.2. Chl a concentration

Chl a concentrations in situ were 0.080 μgL\(^{-1}\) at station S1, 0.091 μgL\(^{-1}\) at station S2, 0.130 μgL\(^{-1}\) at station S3, and 0.092 μgL\(^{-1}\) at station S4 (Fig. 3). At the end of the incubation, temperature and CO2 concentration did not significantly affect Chl a concentrations at stations S1 and S2, individually and interactively (Table S1; Fig. 3A and B). Elevated temperature significantly reduced Chl a concentrations at station S3 at both LC and HC levels (Tukey HSD, both \(p < 0.05\)) and at station S4 at LC level (Tukey HSD, \(p = 0.02\)) (Table S1; Fig. 3C and D). By the sixth day of the incubation, Chl a concentrations at station S3 were 47%–55% lower at HT than at LT (Tukey HSD, \(p < 0.05\)) (Fig. 3C). At LC level, Chl a concentration at station S4 reduced by 52% with rising temperatures, while at HC Chl a concentration was not significantly affected by rising temperatures (Tukey HSD, \(p = 0.7\)) (Fig. 3D).

3.3. Day-time primary productivity

On the final day of the incubations, temperature and CO2 concentration interactively affected day-time primary productivity at stations S1 and S2, but not at stations S3 and S4 (Table S1). Compared to low temperature and low CO2 (LTLC) treatments, day-time productivity at station S1 was 41% higher at LTHC (Tukey HSD, \(p = 0.02\)) and 44% higher at HTLC (Tukey HSD, \(p = 0.01\)) (Fig. 4A). At station S2, day-time productivity was 12% higher at LTHC (Tukey HSD, \(p = 0.08\)) and 39% higher at HTLC (Tukey HSD, \(p = 0.04\)) than at LTLC. Day-time productivity at stations S1 and S2 was similar between LTLC and HTHC treatments (Tukey HSD, \(p > 0.1\)). At stations S3 and S4, day-time productivity was not significantly different between all treatments (Tukey HSD, all \(p > 0.05\)) (Fig. 4C and D).

3.4. Net primary productivity

On the final day of the incubations, at station S1, net primary productivity was lower at LTLC than at LTHC or HTLC conditions (Tukey HSD, \(p = 0.3\) between LTLC and LTHC treatments; \(p = 0.04\) between LTLC and HTLC treatments) (Fig. 5A). Net primary

Table 2

<table>
<thead>
<tr>
<th>pCO2 (μatm)</th>
<th>pHnbs</th>
<th>TA (μmol L(^{-1}))</th>
<th>DIC (μmol L(^{-1}))</th>
<th>HCO3(^-) (μmol L(^{-1}))</th>
<th>CO2(^-) (μmol L(^{-1}))</th>
<th>CO2(^2) (μmol L(^{-1}))</th>
<th>Ω calcite</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTLC</td>
<td>419 ± 13a</td>
<td>8.19 ± 0.01a</td>
<td>2342 ± 15a</td>
<td>2050 ± 12a</td>
<td>1818 ± 11a</td>
<td>220 ± 5a</td>
<td>12 ± 0.4a</td>
</tr>
<tr>
<td>LTHC</td>
<td>977 ± 64b</td>
<td>7.88 ± 0.03b</td>
<td>2349 ± 18a</td>
<td>2210 ± 16b</td>
<td>2060 ± 17b</td>
<td>121 ± 7b</td>
<td>28 ± 1.8b</td>
</tr>
<tr>
<td>HTLC</td>
<td>376 ± 14a</td>
<td>8.23 ± 0.01a</td>
<td>2343 ± 16a</td>
<td>2028 ± 8a</td>
<td>1782 ± 7a</td>
<td>235 ± 8a</td>
<td>11 ± 0.4a</td>
</tr>
<tr>
<td>HTHC</td>
<td>891 ± 61b</td>
<td>7.91 ± 0.03b</td>
<td>2348 ± 22a</td>
<td>2194 ± 18b</td>
<td>2038 ± 18b</td>
<td>130 ± 8b</td>
<td>26 ± 1.8b</td>
</tr>
</tbody>
</table>

Fig. 3. Chl a concentration of surface phytoplankton assemblages in situ and in the bottle after 6 days of incubation at different experiment conditions. Different letters indicated statistically difference based on Tukey post hoc test. The values represent the mean ± standard deviation (error bar) for three replicates.
productivity was not significantly different between LTLC and HTHC treatments at station S1. Similarly, at station S2, net primary productivity at LTLC was significantly lower than at HTLC (Tukey HSD, p = 0.03), whereas it was not significantly different between LTLC, LTHC and HTHC (Tukey HSD, all p > 0.05) (Fig. 5B). At stations S3 and S4, net primary production did not differ between all treatments (Tukey HSD, all p > 0.05) (Fig. 5C and D).

3.5. Night time respiration

Temperature and CO2 concentration independently and interactively affected night time respiration rate at station S4, but not at the other stations (Table S1). At S1 and S2, at ambient temperature, night time respiration rates increased significantly at elevated CO2 (Tukey HSD, both p < 0.05, Fig. 6A and B); whereas at high temperature, night time respiration rates were not affected by elevated CO2 levels (Tukey HSD, both p > 0.05). At station S3, at HC, night time respiration rate was enhanced by rising temperature (Tukey HSD, p = 0.03) (Fig. 6C); at station S4, at LC, night time respiration rate was enhanced by rising temperature (Tukey HSD, p < 0.01) (Fig. 6D).

4. Discussion

Warming and increased CO2 levels both individually boosted primary productivity in samples of phytoplankton communities taken in nearshore and offshore habitats in the western South China Sea, although these were not all statistically significant increases (Figs. 4 and 5). The effect of rising CO2 on primary productivity and respiration was temperature dependent, and the combination of elevated CO2 and temperature resulted in antagonistic effects on production and respiration of the phytoplankton assemblages (Figs. 4, 5 and 6).

There were enhanced carbon fixation rates at elevated CO2 levels at all stations (Figs. 4 and 5), a similar result to that obtained in other experiments using shipboard incubations, mesocosm experiments and CO2 seeps (Tortell et al., 2008; Engel et al., 2014; Holding et al., 2015; Johnson et al., 2015). The dominant phytoplankton groups at our offshore stations were Synechococcus, Prochlorococcus and picoeukaryotes (Zhong et al., 2013; Wu et al., 2014a) whereas diatoms (Pseudonitzschia pungens and Chaetoceros pseudocurvisetus) and dinoflagellates (Protoperidinium conicum) dominated at our inshore stations (Zhang et al., 2014). Rising seawater CO2 levels are expected to increase carbon fixation rates of larger species more than small phytoplankton species because it is more difficult for large species to take up sufficient inorganic carbon as they have a smaller cell surface:volume quotient (Wu et al., 2014b). Furthermore, elevated CO2 levels tend to increase the percentage of diatoms in phytoplanktonic and sessile algal communities (Tortell et al., 2002; Domingues et al., 2014). In our experiments, the different responses of offshore and inshore surface phytoplankton assemblages to increased levels of temperature and pCO2 could be due to differences in the phytoplankton communities.

Temperature increases of about 2°C significantly increased phytoplankton assemblage productivity in coastal water at ambient levels of CO2. This can be expected, since warming is known to increase enzyme activity, and enhance cellular metabolic activity and so improve nutrient or CO2 uptake (Montagnes and Franklin, 2001; Beardall and Raven, 2004). However, warming did not lead to any increase in night time respiration in coastal water, which might indicate less effect of rising temperature on enzyme activity in our study (Fig. 6), suggesting that increased productivity may be due to more efficient nutrient or CO2 uptake. Another possible reason for greater primary productivity in the warming treatments may be a shift from predominantly large to mainly small sized algal cells during the incubation (Daufresne et al.,
2009; Sommer et al., 2015). Unfortunately, we did not determine the community structure at the end of experiments. However, both ambient and elevated temperature treatments in this study are close to the upper thermal limit for growth of most phytoplankton species (Boyd et al., 2013). In this case, rising temperature is expected to shift community composition and cause an increase in the abundance of small-celled phytoplankton. Small species show stronger temperature responses in terms of their photosynthetic C-fixation compared with large species (Sommer et al., 2015), which may lead to higher productivity in warmer coastal water (Figs. 4 and 5).

In the present work, we observed higher night respiratory under HC conditions (Fig. 6) in coastal waters at ambient temperature, this could be due to enhanced energy demand against the acidic stress such as maintaining the cell’s homoeostasis (Jin et al., 2015). However, such a respiratory enhancement was not observed at elevated temperature. It is possible that such a level of elevated temperature may increase cellular metabolic activity and periplasmic redox activity that counteracted the acidic stress. On the other hand, small-sized species seem insensitive to increased pCO2 in terms of carbon fixation (Tortell et al., 2002; Domingues et al., 2014; Wu et al., 2014b), and they are highly sensitive to high light intensities that cause severe inhibition of C-fixation (Li et al., 2011). Therefore, these effects might contribute to the observed similar respiratory in primary productivity of offshore-water where small-sized species dominated (Zhong et al., 2013), and also contribute to the low primary productivity of coastal water at warming and acidification treatments with high percentage of small sized species (Figs. 4 and 5). Gao et al. (2012) reported that rising CO2 decreased phytoplankton productivity in surface seawater under 90% incident solar radiation in the South China Sea, due to enhanced photoinhibition. Different nutrient concentrations can be responsible for the discrepancy between our study and Gao et al. (2012), because seawater was enriched by 1 μmol L^{-1} NaNO3 and 0.5 μmol L^{-1} NaH2PO4 in this study whereas initial DIN and DIP concentration were lower than 0.01 μmol L^{-1} and 0.15 μmol L^{-1}, respectively, in the study of Gao et al. (2012). Rising CO2 is known to increase primary productivity at high nutrient concentrations, but the additional inorganic carbon does not boost productivity in nutrient limited conditions (Yoshimura et al., 2009; Cels-Plà et al., 2015).

The temperature and CO2 concentrations of surface oceans are rising simultaneously, but the carbonate chemistry of coastal water is complex, due to the local effects of hydrography, metabolic activity, nutrient input and watershed processes (Duarte et al., 2013). The effects of CO2 on phytoplankton physiology and productivity has important biogeochemical implications. Increased productivity at elevated CO2 level could accelerate carbon sequestration of phytoplankton which may increase the CO2 uptake of coastal seawater from the atmosphere. Decreased chlorophyll concentrations offshore due to warming may limit biological productivity because phytoplankton are the primary energy source for marine food chains. Our study shows that phytoplankton assemblages in different regions respond differently to increases in CO2 and temperature. However, if our shipboard tests reflect natural responses, then ongoing warming and acidification in the South China Sea is not expected to increase overall regional primary productivity due to a lack of nutrients in offshore waters. Other environmental factors such as changes in solar radiation, wind-speed induced mixing and deposition of dusts may also affect the primary productivity of phytoplankton communities. Therefore, shipboard incubations during different seasons or with waters influenced by episodic events might lead to differential responses to warming and acidification.

5. Conclusion

The present study shows combined effects of ocean warming and
acidification on phytoplankton primary productivity, Chl a concentration and night respiration of two coastal and two offshore waters in the western South China Sea. Warming and elevated CO₂ levels individually increased primary productivity, especially in the coastal water. However, the combination of elevated temperature and increased CO₂ did not increase primary productivity at all stations. Different responses in primary productivity, Chl a concentration and night respiration to warming and acidification between the coastal and offshore waters may be due to differences in the phytoplankton community composition and in their sensitivity to elevated temperature or CO₂ levels.

Acknowledgements

This study was supported by National Natural Science Foundation (41720104005, 41721005, 41430967, 41806129) and Joint Project of National Natural Science Foundation of China and Shandong Province (No. U1606404), China Postdoctoral Science Foundation (2017M612129) and the outstanding postdoctoral program of State Key Laboratory of Marine Environmental Science (Xiamen University). We thank the captain and crew of the research vessel Shiyan III and the chief Dr. Zhen Shi for his organization during the cruises.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.marenvres.2018.08.011.

References

Domingues, R.B., Guerra, C., Barbosa, A.B., Brutas, V., Galvão, H.M., 2014. Effects of ultraviolet radiation and CO₂ increase on winter phytoplankton assemblages in a
temperate coastal lagoon. J. Plankton Res. 36, 672–684.

