Dynamics of heterotrophic dinoflagellates off the Pearl River Estuary, northern South China Sea

Wenlu Lana,b, Bangqin Huanga,*, Minhan Daia, Xiuren Ningc, Lingfeng Huanga, Huasheng Honga

a State Key Laboratory of Marine Environmental Science, Environmental Science Research Center, Xiamen University, Xiamen, PR China
b Marine Environmental Monitoring Center of Beihai, Bureau of Environmental Protection of Guangxi, Beihai, PR China
c Second Institute of Oceanography, State Oceanic Administration, Hangzhou, PR China

\section{Introduction}

Heterotrophic dinoflagellates (HDFs) are a major component of the micro-zooplankton (<200 \textmu m) size class, and as predators of various classes of plankton, and as prey for larger members of the zooplankton, they provide a key trophic linkage in the microbial food web (e.g. Jeong, 1999; Levinsen and Nielsen, 2002; Yang et al., 2004; Sherr and Sherr, 2007). Sherr and Sherr (2007) have summarized evidence showing that HDFs are a significant component of micro-zooplankton and they have the greatest potential to consume diatoms of the major groups of herbivores in pelagic systems. Since many species have an optimal size ratio between themselves and their prey of 1:1, HDFs can prey on organisms as large as, or larger than, themselves in size, while other categories of phagotrophic protists (heterotrophic flagellates and ciliates) in general feed on smaller sized prey (e.g. Jeong 1999; Sherr and Sherr, 2007). Consequently, small HDFs (<20 \textmu m) can compete for prey with heterotrophic nanoflagellates and ciliates, and large HDFs (>20 \textmu m) can compete with copepods for prey (Archer et al., 1996; Sherr and Sherr, 2007). A certain part of the phytoplankton standing stock is consumed by HDFs and so primary production is affected (Hall et al., 2004; Hlaili et al., 2006). Moreover, with their potential fast-growth rate, HDFs respond quickly to blooms and play a role as significant as the meso-zooplankton in consuming phytoplankton blooms (Archer et al., 1996; Assmy et al., 2007; Sherr and Sherr, 2007). Thus, it is certain that HDFs play a significant role in carbon-energy flow and material cycling in oceanic ecosystems (Lessard, 1991; Sherr and Sherr, 1994; Jeong 1999).

Although the important role of HDFs in pelagic microbial food web dynamics is documented in numerous equatorial to polar studies (e.g. Verity et al., 1996; Sherr et al., 1997; Levinsen and Nielsen, 2002; Yang et al., 2004; Henjes et al., 2007), many reports are still biased towards the ciliated component of the micro-
zooplankton rather than HDFs (Nielsen and Andersen, 2002; Sherr and Sherr, 2007). In addition, misconceptions remain that the micro-zooplankton planktonic protists are mainly ciliates (Sherr and Sherr, 2007). Based on the important roles described above, the HDFs obviously deserve to be included in studies of micro-zooplankton community structure and food web dynamics (Sherr et al., 1997; Nielsen and Andersen, 2002; Sherr and Sherr, 2007). However, spatial distribution and temporal variations of these assemblages are not adequately addressed.

The northern South China Sea (SCS) off the Pearl River estuary, located mainly between 17 and 23° N and from 110 to 118° E, and characterized by tropical and subtropical climate is a marginal sea with wide continental shelves and complex hydrological environments. The northern SCS represents typical oligotrophic characteristics, with significant environmental gradients (e.g. temperature, salinity and nutrients) due to the influence of the Pearl River, the thirteenth largest river in the world. The northern SCS is also sensitive to many types of physical forcing on the different terms (e.g. meso-scale eddies, monsoon). Previous studies show that the oligotrophic offshore regions of the northern SCS are characterized by low biomass and special temporal variations with high biomass in winter while low in summer, which are quite different from the conditions in temperate and tropical waters (Sherr and Sherr, 2007). In addition, misconceptions remain that the oligotrophic offshore regions of the northern SCS are characterized by low biomass and special temporal variations with high biomass in winter while low in summer, which are quite different from the conditions in temperate and tropical waters (Sherr and Sherr, 2007). Based on the important roles described above, the HDFs obviously deserve to be included in studies of micro-zooplankton stocks in order to study the coupling of predator–prey in such a subtropical oligotrophic ocean. However, there has been little study concerning micro-zooplankton distribution and temporal variation in this area. Eddies are very active in the northern SCS (e.g. Wang et al., 2003; Jia et al., 2005). Ning et al. (2004) report that eddies affect phytoplankton and primary production in the SCS, indicating that the cold eddy shows rich nutrients, low dissolved oxygen (DO), and high Chl.a and primary productivity (PP), while the warm pool is associated with poor nutrients, high DO, and low Chl.a and PP. Unfortunately, very few studies have been made concerning the effects of eddies on HDF abundance and biomass in this area. Two anticyclonic (warm) eddies occurred during our cruise in February, 2004, and two transects were set across the two warm eddies to study coupling between meso-scale eddies and HDFs.

The aim of the present study was to examine temporal and spatial variations of HDFs and the factors influencing their distribution and temporal variations. The coupling between meso-scale eddies and HDFs, and the size-spectrum of HDFs were also addressed in the northern SCS.

2. Materials and methods

2.1. Study area

The study was carried out during two cruises, which were in February 2004 and July 2004, in the northern SCS off the Pearl River Estuary (17.5–23°N, 110.5–118°E). The study area involved subtropical waters with wide continental shelves and very complex hydrological conditions. Stratification existed almost throughout the year offshore, although the study area was influenced by the East Asian monsoon. Differences of wind velocity and other hydrological factors (e.g. meso-scale eddies and upwelling) cause changes in the vertical mixing layer nutricline depth (Tseng et al., 2005), influencing nutrient supply and availability in the upper water, and affecting plankton biomass and distribution in the study area concomitantly. The outflows of the Pearl River and the Hanjiang River also greatly influence this area, mostly in the wet season (March–September), and provide large amounts of nutrients into this area (Huang et al., 2008). Based on the water depth along the transects, we divided the area into three typical regions: coast, shelf, and slope.

The sampling stations are shown in Fig. 1. There were four transects (A, B, C and D), which went southeastward from the coast to the continental shelf and then to the slope (deep water). Transect A was from the Pearl River estuary to the southwest of Dongsha Island; transect B passed through the summer wind-driven upwelling off eastern Guangdong; transect C was from Modaomen, one branch of the Pearl River to the SCS, to the continental slope; while transect D was to the northeast of Hainan Island.

During the winter cruise in February, 2004, two anticyclonic (warm) eddies were observed (Fig. 1). Transect B partly cut through one warm eddy (WE1) near Dongsha Island, while transect D cut through another warm eddy (WE2) to the east of Hainan Island. WE1 was stronger and was formed by the Kuroshio intrusion while WE2 was in its weakening period and might have been of local origin from the northern SCS (Wang et al., 2008). Stn. B2 was at the edge of WE1, while Stn. D3 was at the edge of WE2.

2.2. Sampling

Water samples for biological and chemical analyses were collected using Niskin bottles from the Sea Bird 19 CTD-sampler (Oceanic Co., USA), at 3–8 selected depths for each station depending on the water depth. Biological and chemical analyses were carried out on water samples drawn from the same bottles.
2.3. Hydrological data

At each station, the Sea-Bird 19 CTD profiler was used to obtain vertical profiles of temperature, salinity, density and fluorescence. Just prior to the cruise, the CTD was shipped back to Sea-Bird for calibration. Data from the sensors of the CTD units were obtained during downcast. Data processing followed the JGOFS protocol (Knap et al., 1996).

2.4. Nutrient analysis

Water samples were filtered using 0.45 \(\mu\)m Nuclepore filters. The filtrate was frozen and nutrients were measured within 24 h. Nitrate and phosphate were determined colorimetrically using a flow injection analyzer (Tri-223 auto analyzer) (Pai et al., 1991). Nitrate plus nitrite was measured by reducing nitrate to nitrite with an on-line Cd coil (Pai et al., 1991). All these measurements were undertaken onboard immediately upon sample collection. The precision was 0.61% for phosphate (at 1.2 \(\mu\)M) and 0.57% for nitrite (at 2.4 \(\mu\)M). The detection limit was 0.1 \(\mu\)M for phosphate and 0.5 \(\mu\)M for nitrate.

2.5. Chlorophyll a

Chlorophyll a (Chl\(a\)) was determined using fluorescence analysis (Parsons et al., 1984), with the volume of seawater sample being 300–1000 mL, depending on the Chl\(a\) concentration, and in vitro measurements were conducted using a Shimadzu (RF-5301PC) fluorospectrometer with the excitation and emission wavelengths set at 430 and 670 nm, respectively. The Chl\(a\) content of the different size classes (pico-, nano-, and micro-) of the phytoplankton were measured based on the size-fractionation of water samples as described in Huang et al. (1999).

2.6. Enumeration of HDFs

In the case of the small HDFs with size \(<20 \mu\)m, a 100 mL sample was size-fractionated through a 20 \(\mu\)m nylon mesh, and then preserved with 0.5% glutaraldehyde (Yang et al., 2004). The samples were stored cold (\(\leq4^\circ\)C) until filtration. The samples were stained with DAPI (4'6'-diamidino-2-phenyl-indole, 25 \(\mu\)g mL\(^{-1}\) final concentration) and filtered by gravity onto a black-stained poly-carbonate membrane filter with 2 \(\mu\)m pore size. A backing filter of 5 \(\mu\)m pore size was used to promote the even distribution of material on the filter. The filter was transferred to a microscope slide and embedded between two drops of paraffin oil. A cover slip was placed on top of the second drop of oil, and the prepared slides were immediately stored in darkness at \(\leq20^\circ\)C onboard until they were returned to the laboratory for later analysis. Filters were examined using an epifluorescence Leica compound light microscope with \(\times400\) and/or \(\times1000\) magnification. At least two hundred HDF cells were examined.

For HDFs \(>20 \mu\)m, a 500–1000 mL water sample was fixed with glutaraldehyde (1% in final concentration) and held in darkness at 4 \(^\circ\)C. The fixed sample was condensed to 10 mL by settling and the upper water was siphoned off through a 10 \(\mu\)m mesh. Then a 1 mL subsample was placed in a counting chamber for enumeration under the inverted fluorescence microscope (LEICA DML, \(\times200\)). A 10 \(\mu\)g mL\(^{-1}\) final concentration of DAPI was added to the chamber for 7 min, and the whole slide was enumerated. Several subsamples were examined and at least one hundred \(>20 \mu\)m HDF cells were counted (with the exception of a few samples with very low abundance).

Dinoflagellates were distinguished from other flagellates based on cell morphology and nucleus structure, especially the unique condensed chromosomes visible with DAPI staining (Verity et al., 1996). HDFs were distinguished from autotrophic taxa by the absence of chlorophyll fluorescence in the fixed samples which were analyzed. Each HDF cell counted was sized for bio-volume calculation using a calibrated ocular micrometer. The calculation of carbon biomass of HDFs was based on the equation: carbon (pg) = 0.216 \(\times\) [volume, \(\mu\)m\(^3\)]\(^{0.939}\) (Menden-Deuer and Lessard, 2000). Depth-integrated carbon biomass was calculated from the surface to the bottom layer in coastal and continental shelf water based on depth, and from the surface to 200 m over the continental slope.

2.7. Data analysis

The statistical differences between HDF biomass and environmental parameters were evaluated using one-way ANOVA. The Bonferroni test was selected for multiple comparisons of ANOVA when equal variances were assumed; otherwise the Games-Howell test was employed. \(p\) values <0.05 were regarded as the significant level. Correlations between HDFs and environmental variables were determined by bivariate correlation using the Pearson correlation coefficient. Correlation analysis was performed for all sample depths from each station. All tests were performed using SPSS 13.0 software.

3. Results

3.1. Environmental parameters in the study area

The temporal and spatial distribution of temperature, salinity and Chl\(a\) in the surface water and in a typical transect (Transect A) of the study area during the winter and summer cruises have been described in Huang et al. (2008). The stations were divided into the three sub-regions: estuary and coast (Stns A9 and C7); continental shelf waters; and slope waters at depths of \(<50\) m, \(>50\)–\(\leq100\) m and \(>100\) m based on the topography of the study area (Huang et al., 2008). The estuarine and coastal water system was characterized by lower salinity, lower temperature and higher Chl\(a\), while relatively higher temperature, higher salinity and lower Chl\(a\) identified the slope water.

Sea surface temperature (SST) increased from the estuary to the continental shelf to the slope water, with higher value in the summer (27.44–31.02 \(^\circ\)C) than in the winter (15.56–24.53 \(^\circ\)C). Salinity of the surface water showed a similar trend to SST, with values which varied between 31.24 and 34.92 in the winter and between 20.18 and 34.52 in the summer. Chl\(a\) in the surface water decreased from estuary to continental shelf and then to the slope water in both seasons, which showed a contrary trend to SST and salinity. In the surface water in summer, high temperature (\(>30\) \(^\circ\)C), relatively low salinity (\(<33\)) and high Chl\(a\) were observed in continental shelf water in the middle of transect B at Stns B3 and B4. The highest Chl\(a\) value was observed in the surface layer of the slope waters (at Stn. D3), with a value greater than 1.0 \(\mu\)g L\(^{-1}\) (Huang et al., 2008).

Vertical profiles of temperature were homogeneous in coastal water but heterogeneous in the shelf and slope waters, and the thermocline was weak in continental shelf and slope waters in winter. In the summer, an apparent thermocline occurred between about 10–50 m and 40–70 m in the continental shelf and slope waters respectively. Salinity in the upper water of transect A was more homogeneous during the winter. Chl\(a\) was higher in the winter in the upper water offshore while in coastal water it was higher in the summer. It was higher in the bottom water than at the surface at the inner shelf stations, while sub-surface Chl\(a\) maximum (SCM) layer occurred at about 40–70 m in most of the off
shelf stations and was mainly contributed by the pico-phytoplankton (Huang et al., 2008).

3.2. Horizontal distribution and temporal variations of HDFs

Abundance and carbon biomass of HDFs and their horizontal distribution are shown in Fig. 2 and Table 1. HDFs were ubiquitous in the northern SCS and their abundance and carbon biomass ranged from \(4 \times 10^3\) to \(102 \times 10^3\) cells L\(^{-1}\) and from 0.34 to 12.3 \(\mu\)g C L\(^{-1}\) in winter; and from \(2 \times 10^3\) to \(142 \times 10^3\) cells L\(^{-1}\) and from 0.22 to 31.4 \(\mu\)g C L\(^{-1}\) in summer. High abundance of HDFs was observed in estuarine and coastal waters with a value of approximately \(100 \times 10^3\) cells L\(^{-1}\), with the highest values in the estuary area, at the bottom of Stn. C7 in winter and at the surface of Stn. A9 in summer. The abundance in surface water ranged from \(11 \times 10^3\) to \(94 \times 10^3\) cells L\(^{-1}\) with a mean of \(32 \pm 19 \times 10^3\) cells L\(^{-1}\) (\(n = 21\)) in winter, while in summer it ranged from \(8 \times 10^3\) to \(142 \times 10^3\) cells L\(^{-1}\) with an average of \(37 \pm 30 \times 10^3\) cells L\(^{-1}\) (\(n = 24\)). Abundance decreased from the coast to the slope waters (Fig. 2a, b). However, a relatively high abundance of HDFs was observed on the continental shelf around Stn. B4 and on the slope around Stn. D3 in summer (Fig. 2b). The abundance was low (less than \(20 \times 10^3\) cells L\(^{-1}\)) at most stations in the slope waters in both seasons (Fig. 2a, b). Highest abundance of HDFs in the surface of the slope water was located at Stn. B2 in the winter but at Stn. D3 in the summer, with values of \(44 \times 10^3\) and \(54 \times 10^3\) cells L\(^{-1}\), respectively.

The depth-integrated (\(\leq 200\) m) carbon biomass of HDFs ranged from 134 to 458 mg C m\(^{-2}\) in the winter and from 163 to 657 mg C m\(^{-2}\) in summer (Fig. 2c, d). High-depth-integrated HDF biomass was observed on the slope in the winter but on the shelf in the summer. Integrated HDF carbon biomass generally increased from coastal to offshore water in the winter, while it generally decreased from continental shelf stations to the coastal and the slope water in the summer (Fig. 2c, d).

Variations of HDF biomass between summer and winter varied at different regions in the northern SCS (Table 1). For estuarine and coastal water, HDF abundance was similar between the two seasons, while carbon biomass was higher in the summer (\(p < 0.05\)). For the continental shelf, HDF abundance and carbon biomass (including integrated) were higher in the summer (\(p < 0.05\)). However, for the slope water, HDF abundance and biomass were significantly higher in winter (\(p < 0.01\), Table 1).

3.3. Vertical distribution of HDF abundance and carbon biomass

Fig. 3a, b shows the distribution of HDF abundance along transect A in winter and summer. High abundance occurred in coastal waters, and generally decreased from coastal to slope waters. HDF abundance also decreased from surface to deeper water in the slope water and high abundance was mostly concentrated in the upper 100 m. HDFs were rare below 100 m, with abundance values less than \(10 \times 10^3\) cells L\(^{-1}\) (excluding Stn. D1 in winter). However, in continental shelf and some coastal waters, HDFs generally increased from surface to bottom and maximum HDF abundance in the water profile was mainly concentrated in or up to the SCM layer (about 40–70 m). The HDF distribution pattern along each transect
Integrated biomass was calculated water column integrated within 200 m. in the northern South China Sea during cruises in February and July 2004. Note: HDFs showed the opposite trend (Fig. 4). Despite their over-slope waters, both in terms of abundance and biomass, while large contribution of small HDFs generally increased from coastal to depths sampled in both February and July, the majority of HDFs overwhelming numerical dominance, the small HDFs, however, did not surface to bottom.

HDFs was concentrated at the shelf stations, and maximum abundance and carbon biomass of the heterotrophic dinoflagellates (103 cells L-1) and biomass was very low below 100 m column in the summer. In the slope region as well as at Stn. S1 in surface to sub-bottom in the winter and to the bottom of the water summer. In continental shelf water, HDF biomass increased from 2004 in the northern SCS, the dominant morphotypes in terms of abundance were Gymnodinium/Gyrodinium-shaped cells of 8–15 μm diameter, that is small HDFs. Morphotypes of spindle- or fusiform-shaped cells less than 20 μm in length were the second most abundant type of small HDFs. Large size Gyrodinium spp., and thecate Protoperidinium spp. and Diplopsalis types were predominant in the Gyrodinium large HDFs.

3.5. Comparison of vertical profiles of HDFs between the different warm eddies

Vertical distributions of HDFs were heterogeneous among the two warm eddies with different origins (at Stns B2 and D3) as well as the reference station (at Stn. C3, without the influence of the warm eddy in the shelf waters of the northern SCS) (Fig. 5).

At the reference station (Stn. C3), HDF abundance was low in the surface layer, increased in the sub-surface layer at a depth of ~50 m, and then decreased with depth (Fig. 5a). At WE2 (Stn. D3) vertical distribution was similar to the reference station, and abundance was very low (<10 × 103 cells L-1) in the surface water, reached a maximum at 50 m and then decreased below this (Fig. 5b). However, HDFs were concentrated in the surface layer in WE1 (Stn. B2), with an abundance of 44 × 103 cells L-1 (Fig. 5c), which was approximately 4-5 fold that at the reference station and at Stn. D3 in WE2. Thereafter, HDF abundance in WE1 decreased with depth (though a relatively high value occurred at 70 m) which was different to the pattern at both the reference station and the WE2 station.

3.6. Correlation between HDF biomass and other parameters

Tables 2 and 3 show correlation values between HDF biomass and physical–chemical and biological parameters in the mixing

Table 1
Average (±SD) abundance and carbon biomass of the heterotrophic dinoflagellates in the northern South China Sea during cruises in February and July 2004. Note: integrated biomass was calculated water column integrated within 200 m.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Abundance (10^3 cells L⁻¹)</th>
<th>Carbon biomass (μg C L⁻¹)</th>
<th>Integrated biomass (mg C m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuary and coast</td>
<td>51.7 ± 27.3</td>
<td>8.4 ± 3.4</td>
<td>184 ± 52</td>
</tr>
<tr>
<td>Continental shelf</td>
<td>28.1 ± 11.0</td>
<td>3.8 ± 1.2</td>
<td>265 ± 37</td>
</tr>
<tr>
<td>Continental slope</td>
<td>19.6 ± 10.1</td>
<td>2.7 ± 1.4</td>
<td>312 ± 70</td>
</tr>
<tr>
<td>Jul. 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estuary and coast</td>
<td>53.0 ± 32.1</td>
<td>11.5 ± 9.7</td>
<td>229 ± 64</td>
</tr>
<tr>
<td>Continental shelf</td>
<td>32.7 ± 25.0</td>
<td>4.7 ± 1.8</td>
<td>391 ± 189</td>
</tr>
<tr>
<td>Continental slope</td>
<td>13.4 ± 11.2</td>
<td>1.9 ± 1.2</td>
<td>206 ± 54</td>
</tr>
</tbody>
</table>

Fig. 3. Distribution in abundance of heterotrophic dinoflagellates (× 10^3 cells L⁻¹) along transect A in February 2004 (a) and July 2004 (b).
layer and at all sampling depths (in the upper waters of less than 200 m depth) in both seasons.

Negative correlations were observed between HDF biomass and temperature, and HDFs and salinity, in the mixing layer in the both seasons except for HDF and temperature in the summer (Table 2). HDF biomass was significantly positively correlated with nitrate in the mixing layer in both seasons, but correlated more significantly with Chl.a in the mixing layer both in winter and summer. For the overall samples, HDF biomass was negatively correlated with salinity and nitrate and positively correlated with Chl.a in both seasons. As in the mixing layer, correlations between HDF biomass and Chl.a were the most significant (Table 2).

The results also showed significant positive correlation between HDF biomass and size-fractionated Chl.a biomass in both seasons (Table 3). Small HDF biomass was significantly correlated with the nano- and pico-phytoplankton, whereas large HDF biomass was significantly correlated with micro-, nano-, and pico-phytoplankton biomass. Total HDFs significantly correlated with micro-, nano- and pico-phytoplankton biomasses and was correlated most significantly with nano- and pico-phytoplankton biomass.

4. Discussion

4.1. Comparison with other sea areas

The present study was the first to address temporal and spatial distribution, vertical profiles, and size structure of HDFs in the northern SCS. The abundance and biomass in the present study were comparable to those previously reported from other similar regions of the world (see Table 4) and in the range for coasts and oceans reported by Jeong (1999). Small HDFs made a primary contribution to both HDF abundance and biomass on the continental shelf and slope in the northern SCS, which was again comparable to similar regions (Table 4). Our results also showed that distance from the coast to the open ocean characterized the distribution gradients of HDFs in this study area. These trends were
poorly known. The micro-zooplankton assemblage in a warm eddy

However, the effect of warm eddies on the micro-zooplankton is

4.2. The effects of warm eddies on HDFs

Vertical profiles varied and depended on the different waters in

Table 2

<table>
<thead>
<tr>
<th>HDF</th>
<th>February 2004</th>
<th>July 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixing</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>Feb. 2004</td>
<td>−0.509b</td>
<td>−0.468b</td>
</tr>
<tr>
<td>All</td>
<td>0.271a</td>
<td>−0.521b</td>
</tr>
<tr>
<td>Jul. 2004</td>
<td>0.131</td>
<td>−0.382a</td>
</tr>
<tr>
<td>All</td>
<td>0.359b</td>
<td>−0.388b</td>
</tr>
</tbody>
</table>

Significant correlation was defined as: *p < 0.05; **p < 0.01.

c Samples in mixing layer.
d Samples in layers of <200 m depth; – not enough data for regression analysis.

similar to those found in phytoplankton and nanoflagellates in the

Table 3

<table>
<thead>
<tr>
<th>HDF</th>
<th>Pico PB</th>
<th>Nano PB</th>
<th>Micro PB</th>
<th>Total PB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Feb. 2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small</td>
<td>0.611b</td>
<td>0.539b</td>
<td>0.183</td>
<td>0.687b</td>
</tr>
<tr>
<td>Large</td>
<td>0.369b</td>
<td>0.685b</td>
<td>0.415b</td>
<td>0.492b</td>
</tr>
<tr>
<td>Total</td>
<td>0.558b</td>
<td>0.710b</td>
<td>0.279b</td>
<td>0.635b</td>
</tr>
<tr>
<td>Jul. 2004</td>
<td>0.561b</td>
<td>0.439b</td>
<td>0.235</td>
<td>0.497b</td>
</tr>
<tr>
<td>Large</td>
<td>0.296b</td>
<td>0.658b</td>
<td>0.585b</td>
<td>0.698b</td>
</tr>
<tr>
<td>Total</td>
<td>0.538b</td>
<td>0.626b</td>
<td>0.495b</td>
<td>0.613b</td>
</tr>
</tbody>
</table>

In the present study, HDF abundance and biomass were high in

4.3. Coupling between other physical processes and HDFs in the northern SCS

In the present study, HDF abundance and biomass correlated positively with Chl.a and nitrate but negatively with salinity in the mixing layer (Table 2). This might have indicated that the distribution of HDFs was influenced by the Pearl River as well as other coastal waters with high nutrients and Chl.a and low salinity. However, the vertical distribution of HDFs was quite different in the Pearl River estuary between the two seasons, which might be due to different mixing strength. In winter, there is lowest runoff in the Pearl River, and thus the water column of the estuary was occupied by seawater with high salinity (Huang et al., 2008). Homogeneity of HDF biomass in the water column at estuarine stations might be due to strong mixing water. In summer, there is the highest runoff in the Pearl River during the year, and the freshwater and seawater became stratified in both estuarine and coastal waters. The outflow of the Pearl River causes a very high phytoplankton biomass at Stn. A9, which is dominated by nano- and micro-phytoplankton (Huang et al., 2008). Large HDFs represented a high proportion of the total HDF biomass (Fig. 4), which may have resulted from a high proportion of nano- and micro-phytoplankton biomass. This suggested that the HDFs showed a rapid response to phytoplankton growth, and phytoplankton biomass might be an important factor influencing HDF abundance and distribution in the northern SCS.

was examined only during dilution experiments on the surface

water in the Atlantic sector of the Southern Ocean by Froneman and Perissinotto (1996), and in the surface and DCM layer in the eastern Indian Ocean by Paterson et al. (2007). The present study was the first one concerning the effects of warm eddies on the structure and vertical distribution of HDF assemblages.

Our results showed that the vertical profile of the HDFs was quite different in the two warm eddies (Fig. 5), indicating that the effects of warm eddies on HDF distribution in the water column differed among eddies. Meso-scale eddies play an important role in horizontal and vertical mixing of water as a hydrological event, and thus influence nutrient availability and variability of biological parameters (Falkowski et al., 1991; Mackas and Galbraith, 2002; Benitez-Nelson et al., 2007; McGillicuddy et al., 2007). However, the effects of warm eddies on biological parameters are complicated, and they display different effects on the plankton (e.g. Rodríguez et al., 2003; de Souza et al., 2006; Paterson et al., 2007). During our study, the two warm eddies had different origins and ages, and this affected the plankton biomass and community structure differently. Huang et al. (in press) show that in the WE1, which is shed from the Kuroshio intrusion and is characterized by oligotrophic conditions, prochlorophytes dominate the phytoplankton community, while in the WE2, which is shed from the coastal waters of the northern SCS, haptophytes dominate the euphotic zone. Due to their down welling nature, warm eddies are expected to isolate nutrient depleted water at the surface (McGillicuddy and Robinson, 1997), which presumably supports the microbial food web through nutrient regeneration (Paterson et al., 2007). In the present study, small HDFs dominated both in WE1 and WE2, with a higher contribution in WE1, which might be due to the Kuroshio origin of WE1. HDF abundance in WE2 was no different to that of the reference station because of local origin and age. High abundance of small HDFs at the surface of Stn. B2 and at the DCM layer at Stn. D3 should be due to the large available food resource of pico- and nano- phytoplankton as well as nanoflagellates (Huang et al., 2008). Thus the HDFs showed a rapid response to food resources in the warm eddies, and were influenced by biological processes.

4.3. Coupling between other physical processes and HDFs in the northern SCS

In the present study, HDF abundance and biomass were high in the estuarine system in both seasons, and HDF biomass correlated positively with Chl.a and nitrate but negatively with salinity in the mixing layer (Table 2). This might have indicated that the distribution of HDFs was influenced by the Pearl River as well as other coastal waters with high nutrients and Chl.a and low salinity. However, the vertical distribution of HDFs was quite different in the Pearl River estuary between the two seasons, which might be due to different mixing strength. In winter, there is lowest runoff in the Pearl River, and thus the water column of the estuary was occupied by seawater with high salinity (Huang et al., 2008). Homogeneity of HDF biomass in the water column at estuarine stations might be due to strong mixing water. In summer, there is the highest runoff in the Pearl River during the year, and the freshwater and seawater became stratified in both estuarine and coastal waters. The outflow of the Pearl River causes a very high phytoplankton biomass at Stn. A9, which is dominated by nano- and micro-phytoplankton (Huang et al., 2008). Large HDFs represented a high proportion of the total HDF biomass (Fig. 4), which may have resulted from a high proportion of nano- and micro-phytoplankton biomass. This suggested that the HDFs showed a rapid response to phytoplankton growth, and phytoplankton biomass might be an important factor influencing HDF abundance and distribution in the northern SCS.
mixing layer in the northern SCS (Huang et al., 2008). The variations among regions, mainly due to the availability of nutrients in the phytoplankton and nanoflagellate abundance were also variable. Abundance and biomass of heterotrophic dinoflagellates (HDFs) and contribution of small HDFs (Table 4) were also greatly influenced by the nutrients available (Huang et al., 2008). The spatial distribution of HDFs, prey, which in turn was mainly influenced by the availability of HDF prey, which in turn was mainly influenced by HDF biomass among different ecosystems were probably caused by the availability of HDF prey (e.g. Sherr and Sherr, 1994; Jeong, 1999; Calbet et al., 2002; Tseng et al., 2005). Consequently, food resources, especially the phytoplankton biomass, seemed to be the major factor controlling the spatial distribution and temporal variation of the HDFs in the northern SCS.

4.4. Factors controlling spatial and temporal variations of HDFs in subtropical waters

The spatial variation of HDFs was far more variable than the temporal variation between the two seasons in the northern SCS (Table 1). Such a result was probably because the study region contains complex ecosystems, including estuary, coast, continental shelf and slope. Both phytoplankton and nanoflagellates are major prey for HDFs (e.g. Sherr and Sherr, 1994; Jeong, 1999; Calbet et al., 2001). The HDF biomass showed a significant correlation with Chla in the northern SCS (p < 0.01, Table 3). During the same cruises, phytoplankton and nanoflagellate abundance were also variable among regions, mainly due to the availability of nutrients in the mixing layer in the northern SCS (Huang et al., 2008). The variations of HDF biomass among different ecosystems were probably caused by the availability of HDF prey, which in turn was mainly influenced by the nutrients available (Huang et al., 2008). The spatial distribution trends of the HDFs matched well those of Chla and nanoflagellates in the northern SCS (Huang et al., 2008), as well as the nutrients in the mixing layer. All of these results suggested that food resources seemed to be the major factor controlling the spatial distribution of HDFs in the study area.

The variation pattern of HDFs between winter and summer depended on the regions in the northern SCS. Thus, in estuarine and coastal regions, HDF biomass was higher in the summer (p < 0.05). In this region, phytoplankton biomass and nanoflagellates also had high values (Huang et al., 2008) as well as the nitrate in the mixing layer. On the continental shelf, variation of the HDFs between the two seasons was unlike that in coastal and shelf waters (Tseng et al., 2005; Huang et al., 2008). Consequently, food resources, especially the phytoplankton biomass, seemed to be the major factor controlling spatial distribution and temporal variation of the HDFs in the northern SCS.

5. Conclusion

HDFs were ubiquitous in the northern SCS but decreased from the estuary to inshore and then offshore, with comparable abundance and biomass to other similar regions. Various physical processes (e.g. river outflow and monsoon), associated with biological processes in different systems, contributed to different seasonal variation and vertical profile patterns between the coast and slope regions. Warm eddies significantly affected the biomass and distribution of the HDFs in the northern SCS, but not in the same way due to their different characteristics. The distribution and seasonal variation of the HDFs accorded well with that of Chla and the nanoflagellates, and bottom-up (food resources) control had a significant influence on the HDFs in the northern SCS.

Acknowledgments

The authors would like to thank the captain and crew of R/V “Yanping 2” for their concerted efforts during field sampling, and Professor John Hodgkiss of The University of Hong Kong for polishing the English. This work was supported by China NSF (No. 40730846, 40806058, 90711006). This work was also supported by the National Basic Key Research Program of the Ministry of Science and Technology of China (China GLOBEC-IMERS Program, No. 2006CB400604).
References

