Protein profiles in zebrafish (Danio rerio) brains exposed to chronic microcystin-LR

Minghua Wang, Dazhi Wang *, Lin Lin, Huasheng Hong

State Key Laboratory of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, People’s Republic of China

1. Introduction

Microcystins (MCs), a group of cyclic heptapeptides, are considered to be hepatotoxins produced by a number of cyanobacterial genera. In the past few decades, MCs have become a worldwide concern due to the significant increase of MCs-producing cyanobacterial blooms in eutrophic rivers, lakes, reservoirs and recreational waters. Among 80 MCs, microcystin-LR (MCLR) is the most toxic (Hoeger et al., 2005). The toxic effects of MCs on fish are reported in a large number of studies including behavioral, histological, and biochemical investigations (Fischer and Dietrich, 2000; Malbrouck et al., 2003, 2004; Baganz et al., 2004; Li et al., 2007; Mezhoud et al., 2008a,b; Malécot et al., 2009; Wang et al., 2010), however most of them focus on its hepatotoxicity. Studies show that organic anion transporting polypeptides (rodent Oatp/human OATP) appear to be specifically required for the active uptake of MCs into hepatocytes (Monks et al., 2007; Feurstein et al., 2009), but Oatp/OATP are also expressed in the heart, lung, spleen, pancreas, blood–brain-barrier (BBB) and brain (Hagenbuch and Meier, 2003; Feurstein et al., 2009). Thus, regardless of their specific hepatotoxicity, MCs have been found in other organs with a concomitant display of toxicity. Fischer and Dietrich (2000) report MCLR in the brain of Cyprinus carpio fed with toxic algae. Cazenave et al. (2005) report the presence of microcystin-RR (MCRR) in the brain of Jenynsia multidentata exposed to water-dissolved toxin for 24 h. In addition to MCs in the brain of J. multidentata, Cazenave et al. (2008) also report changes in swimming activity of this fish upon exposure to MCs, suggesting the probable neurotoxicity of MCs. Taken together, these findings suggest that as a consequence of the high blood perfusion of the brain, significant amounts of MCs could accumulate in the brain across the BBB and result in probable neurotoxicity. Actually, the above hypothesis is supported by the tragic event occurring in Caruaru, Brazil in February 1996. Among the 131 patients intravenously exposed to various concentrations of MCs, 89% of them presented immediate signs of neurotoxicity (e.g. dizziness, tinnitus, vertigo, headache, vomiting, nausea, mild deafness, visual disturbance and blindness) with a consequent onset of overt hepatotoxicity and finally succumbed to multi-organ failure (Carmichael et al., 2001; Soares et al., 2006).

The typical toxicological action of MCs is to inhibit serine/threonine protein phosphatase (PP) (Fischer and Dietrich, 2000; Gehring et al., 2004), followed by hyperphosphorylation of numerous cellular proteins, thereby resulting in the collapse of the cytoskeleton and the loss of cellular integrity (Fischer and Dietrich, 2000; Batista et al., 2003). Moreover, other toxicity mechanisms such as oxidative damage and disruption of osmoregulation are also
per liter in the water of many eutrophic lakes in the world (Song et al., 2008a,b; Malécot et al., 2009), but few efforts have been devoted to exploring the chronic effects of MCs on organisms. Chronic exposure to MCs through drinking water is the main reason for toxicity in organisms has not been well elucidated.

A large number of studies focus on the acute toxicity of MCs (Malbrouck et al., 2003, 2004; Li et al., 2007; Mezhoud et al., 2003, 2004; Malécot et al., 2009), but few efforts have been devoted to exploring the chronic effects of MCs on organisms. Chronic exposure to MCs through drinking water is the main reason for toxicity in organisms has not been well elucidated.

2. Materials and methods

2.1. Zebrafish exposure experiment

Zebrafish were acclimatized in aerated fresh water tanks for 20 d prior to the experiment at a water temperature of 25 °C and a 12 h light/dark cycle, and fed twice a day, 9:00 am and 3:00 pm, with commercial dry bait. During acclimation, the fish were supplemented with Artemia (about 40 mg per fish) three times a week to maintain nutritional status. Then, fish (weighing 0.7 ± 0.07 g) were randomly assigned to three experimental groups for exposure to two MCLR concentrations, 2 and 20 µg L⁻¹ for 30 d, the protein profiles of exposed and non-exposed zebrafish brains were analyzed using the proteomic approach, and the differentially expressed proteins were identified using MALDI-TOF/TOF MS. Toxic content and PP activity in zebrafish brains were also investigated after the 30 d exposure. Thus, we aimed to explore the chronic neurotoxicity of MCLR to zebrafish brains, and to identify potential protein biomarkers so as to understand the damage mechanisms involved.

2.2. MCLR analysis

MCLR content in zebrafish brains was analyzed according to the method of Moreno et al. (2005) with minor modification (Deblois et al., 2008). Briefly, freeze-dried tissue was homogenized in 0.6 mL of 85% methanol (MeOH) using an ultrasonic disrupter (Model 450, Branson Ultrasoundics, Danbury, CT, USA) at 4 °C for 5 min. The homogenate was extracted at 4 °C for 6 h and then centrifuged (8000g) at 4 °C for 10 min, and the supernatant was recovered. The pellet was extracted again using the same procedure and the supernatant was pooled with that collected earlier and washed with the same volume of hexane for 4 h. The hexane layer was discarded and the MeOH layer was completely dried using SpeedVac. The dried brain extract was resolubilized in 100 µL of 50% MeOH for toxin analysis using HPLC with a DAD detector. The toxin separation was performed on a microiner C18 reverse phase column (3 µm) under isocratic conditions with a mobile phase of 10 mM ammonium acetate and acetonitrile (7.4:2.6) for 20 min. The toxin content was quantified using an MCLR standard and expressed as µg cellular MCLR per mg DW (dry weight).

2.3. PP activity analysis

Brain lysate was prepared using tissue protein extraction reagent (T-PER, Pierce Biotechnology Inc., Rockford, IL, USA). 0.5 mg brain tissue was sonicated in 1 mL T-PER reagent and the supernatant was recovered by centrifugation (16 000 g) at 4 °C for 20 min. PP activity was analyzed according to the method of Fontal et al. (1999). Briefly, 35 µL of brain homogenate was mixed with 5 µL of NiCl₂ (40 mM), 5 µL of 5 µg mL⁻¹ bovine serum albumin (Sigma) and 35 µL of phosphatase assay buffer (50 mM Tris–HCl, pH 7.4) and incubated at 37 °C for 10 min. Then 120 µL of 100 µM 6,8-difluoro-4-methylumbelliferyl phosphate (Sigma) was added and it was incubated at 37 °C for another 30 min. PP activity was analyzed using a fluorescence microplate reader at 355 nm (excitation) and 460 nm (emission).

2.4. Proteomic analysis

2.4.1. Protein extraction

Frozen fish brains were homogenized in 0.6 mL of 20% TCA/acetone (w/v) lysis buffer with 20 mM dithiothreitol (DTT) using an ultrasonic disrupter. The supernatant was removed by centrifugation at 17 000 g for 30 min at 4 °C, and the pellet was washed twice with 80% acetone (v/v) and twice with ice-cold acetone with 20 mM DTT. The pellet was recovered by centrifugation at 17 000 g for 30 min at 4 °C each time. Residual acetone was removed in a SpeedVac for about 5 min. The pellet was dissolved in 100 µL rehydration buffer containing 8 M urea, 2% CHAPS, 2.8 µg mL⁻¹ DTT, 0.5% immobilized pH gradient (IPG) buffer and a trace of bromophenol blue. The solution was centrifuged at 20 000 g for 30 min at 15 °C and the supernatant was collected for two-dimensional electrophoresis (2-DE) analysis. The protein content was quantified using the 2-D Quant kit (GE Healthcare).

2.4.2. 2-DE analysis

One hundred and twenty micro gram of each protein sample was mixed with a rehydration buffer and then loaded onto IPG strips of linear pH gradient 4–7 (GE Healthcare). Rehydration and subsequent isoelectric focusing were conducted using the Etan IPGPhor III Isoelectric Focusing System (Amersham Biosciences, USA). Rehydration was performed overnight in a strip holder with 340 µL of rehydration buffer. After rehydration, isoelectric focusing was performed in the following manner: 2 h at 100 V, 2 h at 200 V, 1 h at 500 V, 2 h at 1000 V, 2 h at 4000 V and 6 h at 8000 V. After the first dimension was run, each strip was equilibrated with about 10 mL equilibration buffer containing 50 mM Tris (pH 8.8), 6 M urea, 30% glycerol, 2% SDS, 1% DTT and a trace amount of bromophenol blue, for 17 min. The strip was then placed in fresh equilibration buffer containing 2.5% iodoacetamide (instead of DTT) for another 17 min. Subsequently an 11.25% SDS–PAGE second dimension was performed. Electrophoresis was carried out at 10 mA/gel for 15 min, followed by a 6 h run at 200 V until the bromophenol blue front reached the edge of the gels. The proteins were visualized by silver staining and three 2-DE gels were performed for each sample. Unless stated otherwise, the 2-DE gels shown were representative of the three gels performed.
2.4.3. Silver staining
Silver staining was performed following the method of Wang et al. (2009). Briefly, the gel was fixed for 2 h initially in a fixation solution containing 40% (v/v) ethanol and 10% (v/v) acetic acid. It was then sensitized in a solution containing 30% (v/v) ethanol, 0.2% (w/v) sodium thiosulphate, 6.8% (w/v) sodium acetate and 0.125% (v/v) glutaraldehyde, followed by three Milli-Q water washes (5 min each time). Then the gel was stained for 20 min in 0.25% (w/v) silver nitrate with 0.015% (v/v) formaldehyde and washed twice with Milli-Q water (0.5 min each time). The gel was developed in 2.5% (w/v) sodium carbonate containing 0.0074% (v/v) formaldehyde. The reaction was stopped with 1.5% (w/v) ethylenediaminetetraacetic acid, disodium salt.

2.4.4. Image capture and analysis
Images were made using a Gel-documentation system on a GS-670 Imaging Densitometer from Bio-Rad (USA) and 2-DE electrophoretogram matching software. Images were saved in TIFF format before analysis. Computerized 2-DE gel analysis (spot detection, spot editing, pattern matching, database construction) was performed using the ImageMaster 2D Elite (GE Life Science, USA) and Melanie IV. There were three gels for samples from control or treated zebrafish brains. After spot detection and matching, spot intensities were normalized with total valid spot volume in order to minimize the nonexpression related variations in spot intensity and hence accurately provide semiquantitative information across different gels. Spots normalization was done by analyzing the relative volume (volume percentage). A one-way ANOVA (analysis of variance) test was used to analyze spot intensities among different groups. Only protein spots showing a significance (P < 0.05) and at least a 2.0-fold difference in abundance (ratio of mean normalized spot volume of treated versus control groups) were considered as up- or down-regulated. These protein spots of interest were selected for identification by mass spectrometry.

2.4.5. Mass spectrometric analysis
Differentially expressed protein spots in MCLR exposed and non-exposed brains were manually excised from 2-DE gels. The gel pieces were washed twice with 200 mM ammonium bicarbonate in 50% acetonitrile/water (20 min at 30 °C), then dehydrated using acetonitrile and spun dry. In gel trypsin digestion was performed by adding 10 ng µL⁻¹ trypsin (Promega) in 25 mM ammonium bicarbonate overnight at 37 °C. For MALDI-TOF/TOF MS analysis, 1 µL of the digest mixture was mixed on-target with 1 µL of 100 mM α-cyano-4-hydroxy-cinnamic acid in 50% acetonitrile and 0.1% trifluoroacetic acid on the target plate before being dried and analyzed with a MALDI TOF/TOF mass spectrometer (4800 Proteomics Analyzer, Applied Biosystems). MALDI TOF MS and TOF-TOF tandem MS were performed and data were acquired in the positive MS reflector mode with a scan range from 900 to 4000 Da, and five monoisotopic precursors (S/N > 200) were selected for MS/MS analysis. For interpretation of the mass spectra, a combination of peptide mass fingerprints and peptide fragmentation patterns were used for protein identification in an NCBI nonredundant database using the Mascot search engine (www.matrixscience.com). All mass values were considered monoisotopic, and the mass tolerance was set at 1.5 ppm. One missed cleavage site was allowed for trypsin digestion; cysteine carbamidomethylation was assumed as a fixed modification, and methionine was assumed to be partially oxidized. Results with CI% (confidence interval%) values greater than 95% were considered to be a positive identification. The identified proteins were then matched to specific processes or functions by searching Gene Ontology (http://www.geneontology.org/).

2.5. Statistical tests
All measurements were replicated at least three times and the data were expressed as mean values ± standard deviation. Statistical analysis was carried out using one-way ANOVA or an independent-samples t-test to evaluate whether the means were significantly different among the groups. Significant differences were indicated at P < 0.05. Prior to one-way ANOVA, data were log transformed to meet ANOVA assumptions of normality and variance homoscedasticity.

3. Results

3.1. Effect of MCLR on toxin accumulation and PP activity in the zebrafish brain

The toxin content and PP activity in zebrafish brains at the end of this exposure experiment are shown in Fig. 1. No MCLR was detected in the control while MCLR significantly enhanced toxin accumulation in MCLR exposed zebrafish brains (Fig. 1A). The toxin contents were 0.030 and 0.053 µg g⁻¹ DW in the brains exposed to 2 and 20 µg L⁻¹ MCLR (Fig. 1A). Namely, the treated MCLR content displayed a positively linear relationship with the ambient toxin concentration (Fig. 1A, P < 0.05). Similarly, the brain PP activity was also enhanced by MCLR and the PP activity increased 1.3 times in zebrafish brains exposed to 20 µg L⁻¹ MCLR (Fig. 1B).

![Fig. 1. MCLR contents (A) and PP activity (B) in the brains of the zebrafish Danio rerio after 30 d of MCLR exposure (control, 2 and 20 µg L⁻¹). Data are expressed as mean values ± SD (n = 3–4). Symbol ‘*’ indicates a significant difference at P < 0.05 between the control and treatments, while ‘#’ represents a significant difference between the 2 and 20 µg L⁻¹ toxin treatments at P < 0.05.](http://www.matrixscience.com)
3.2. Protein profile in the zebrafish brain exposed to MCLR

The representative 2-DE gels of MCLR exposed and non-exposed zebrafish brains are shown in Fig. 2, and quantitative spot comparisons were conducted using image analysis software. On average, more than 900 proteins spots were detected in each gel using silver staining and the ImageMaster 2D Elite software. Compared with the 2-DE gels of the control brains, a total of 30 protein spots from the treated group was found to significantly alter in abundance (≥2-fold; P < 0.05). Among these altered proteins, seven protein spots were newly induced in the exposed treatment (one spot was observed in the 2 μg L⁻¹ toxin treatment and seven spots in the 20 μg L⁻¹ treatment). In addition, six protein spots were significantly downregulated and four protein spots were noticeably upregulated in the 2 μg L⁻¹ treatment (Table 1; Fig. 2). In the 20 μg L⁻¹ group, twelve protein spots were remarkably downregulated and seven protein spots were markedly upregulated (Table 1; Fig. 2). These altered proteins were excised and submitted for identification using MALDI-TOF/TOF MS analysis. All of the protein spots were successfully identified with CI values greater than 95% (Table 1) and the matched proteins came from the NCBI database for the zebrafish D. rerio. The identified proteins were distinguished into 26 different proteins. Of them, four proteins (spots 2, 3, 4 and 17) were involved in cytoskeleton organization, and six proteins (spots 10, 11, 12, 20, 21 and 28) were related to metabolism. Two proteins (spots 14 and 15) were related to the oxidative stress response, and five proteins (spots 5, 6, 9, 22 and 23) played a role in signal transduction. The abundance of PP type 2C alpha 2 (PP2Cα2) was noticeably increased in the 20 μg L⁻¹ treatment. The other proteins were found to be correlated with transport, protein degradation, apoptosis and translation. It should be noted that five protein spots (spots 19, 25, 27, 29, and 30) were definitely identified as the same protein (i.e. vitellogenin 1), although these spots were differentially distributed in the 2-DE gel (Fig. 2C).

4. Discussion

There have been many studies on the toxic effects of MCLR on aquatic organisms and human beings, but little effort has been devoted to exploring the neurotoxicity of MCLR. This study is the first effort to investigate the biochemical mechanism involved in the chronic neurotoxicity of MCs on fish brain at the proteomic level, although MCs probably appear to have presented neurotoxicity in several previous studies (Cazenave et al., 2005, 2008; Fischer et al., 2005; Soares et al., 2006; Feurstein et al., 2009). After 30 d exposure, a significant amount of MCLR was detected in the treated group (Fig. 1A). This is in line with a study that a carp (C. carpio) treated with a single dose of 400 μg kg⁻¹ DW MCLR demonstrates the presence of MCLR in the brain 48 h post toxin application (Fischer and Dietrich, 2000), which allows this toxin to exert its probable neurotoxicity. However, care needs to be taken with MCs content in organisms, since the present organic extraction method can not efficiently extract covalently bound MCs (Williams et al., 1997; Martins and Vasconcelos, 2009). In this study, MCLR was extracted from the zebrafish brain exposed to dissolved MCLR using the same procedure reported by Moreno et al. (2005), which might omit covalently bound MCLR. However, Lance et al. (2010) recently demonstrate the accumulation of covalently bound MCs in Lymnaea stagnalis exposed to toxic cyanobacteria, whereas bound MCs are not detected in dissolved MCLR exposed L. stagnalis. Overall, the covalently bound MCLR as well as non-covalently bound MCLR should be considered with regard to the toxicological study in future.

Using the proteomic approach, 30 differentially expressed proteins caused by MCLR were identified and these proteins were assigned into several groups such as cytoskeleton, metabolism, oxidative stress, signal transduction, protein degradation, transport, apoptosis and translation related. It is worth emphasizing that the proteomic response in the zebrafish brain was dependent on MCLR concentration. Of 30 differentially expressed protein spots, 11 protein spots were observed in the 2 μg L⁻¹ treatment while 27 spots were found in the 20 μg L⁻¹ group, which might be caused by a significantly differential toxin accumulation in the zebrafish brain after the exposure to different MCLR concentrations.

This study showed that MCLR treatment produced oxidative stress in the zebrafish brain. Particularly, mitochondrial aldehyde dehydrogenase 2, a target of MCLR attack in a study (Chen et al.,
<table>
<thead>
<tr>
<th>Spot id.</th>
<th>Accession number</th>
<th>Protein score</th>
<th>Protein score CI%</th>
<th>Peptide count</th>
<th>MW/pI</th>
<th>Protein description</th>
<th>Fold change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytoskeleton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>gi</td>
<td>18858539</td>
<td>280</td>
<td>100</td>
<td>22</td>
<td>54.02/5.50</td>
<td>Desmin</td>
</tr>
<tr>
<td>3</td>
<td>gi</td>
<td>2298523</td>
<td>446</td>
<td>100</td>
<td>13</td>
<td>41.74/5.30</td>
<td>Beta-actin-1</td>
</tr>
<tr>
<td>4</td>
<td>gi</td>
<td>41054750</td>
<td>61</td>
<td>99.11</td>
<td>13</td>
<td>55.98/6.29</td>
<td>Zgc:66419</td>
</tr>
<tr>
<td>17</td>
<td>gi</td>
<td>47086499</td>
<td>116</td>
<td>100</td>
<td>5</td>
<td>27.48/5.08</td>
<td>Tubulin folding cofactor B</td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>gi</td>
<td>48734808</td>
<td>275</td>
<td>100</td>
<td>14</td>
<td>40.31/6.73</td>
<td>NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10</td>
</tr>
<tr>
<td>11</td>
<td>gi</td>
<td>41054629</td>
<td>56</td>
<td>97.05</td>
<td>4</td>
<td>30.83/5.99</td>
<td>Methylthioadenosine phosphorylase</td>
</tr>
<tr>
<td>12</td>
<td>gi</td>
<td>33468556</td>
<td>136</td>
<td>100</td>
<td>4</td>
<td>35.11/6.25</td>
<td>Novel protein similar to human glyoxylate reductase/hydroxyproline reductase</td>
</tr>
<tr>
<td>20</td>
<td>gi</td>
<td>47086189</td>
<td>62</td>
<td>99.24</td>
<td>14</td>
<td>60.75/7.34</td>
<td>Propionyl-CoA carboxylase, beta polypeptide</td>
</tr>
<tr>
<td>21</td>
<td>gi</td>
<td>55925442</td>
<td>164</td>
<td>100</td>
<td>10</td>
<td>57.17/8.46</td>
<td>3-oxoacid CoA transferase 1A</td>
</tr>
<tr>
<td>28</td>
<td>gi</td>
<td>41055658</td>
<td>54</td>
<td>95.74</td>
<td>7</td>
<td>34.59/8.35</td>
<td>3-hydroxyisobutyrate dehydrogenase b</td>
</tr>
<tr>
<td>Oxidative stress response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>gi</td>
<td>41393103</td>
<td>302</td>
<td>100</td>
<td>13</td>
<td>55.23/6.18</td>
<td>Aldehyde dehydrogenase 9A1a</td>
</tr>
<tr>
<td>15</td>
<td>gi</td>
<td>41053732</td>
<td>120</td>
<td>100</td>
<td>7</td>
<td>56.53/5.93</td>
<td>Aldehyde dehydrogenase 2 family (Mitochondrial) a</td>
</tr>
<tr>
<td>Signal transduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>gi</td>
<td>41055564</td>
<td>90</td>
<td>99.99</td>
<td>9</td>
<td>59.12/6.67</td>
<td>Copine 1</td>
</tr>
<tr>
<td>6</td>
<td>gi</td>
<td>71164796</td>
<td>326</td>
<td>100</td>
<td>15</td>
<td>53.53/6.39</td>
<td>Synaptic vesicle membrane protein VAT-1 homolog</td>
</tr>
<tr>
<td>9</td>
<td>gi</td>
<td>61806564</td>
<td>63</td>
<td>99.39</td>
<td>6</td>
<td>37.33/5.61</td>
<td>Guanine nucleotide binding protein (G protein), beta polypeptide 2</td>
</tr>
<tr>
<td>22</td>
<td>gi</td>
<td>54312133</td>
<td>105</td>
<td>100</td>
<td>6</td>
<td>20.85/6.31</td>
<td>Phosphatidylethanolamine binding protein</td>
</tr>
<tr>
<td>23</td>
<td>gi</td>
<td>47271364</td>
<td>145</td>
<td>100</td>
<td>8</td>
<td>42.06/5.18</td>
<td>Protein phosphatase type 2C alpha 2</td>
</tr>
<tr>
<td>Transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>gi</td>
<td>47264590</td>
<td>414</td>
<td>100</td>
<td>25</td>
<td>73.48/6.81</td>
<td>TPA:TPA exp: transferrin</td>
</tr>
<tr>
<td>8</td>
<td>gi</td>
<td>47777306</td>
<td>89</td>
<td>99.98</td>
<td>8</td>
<td>30.61/5.23</td>
<td>Voltage-dependent anion channel 1</td>
</tr>
<tr>
<td>24</td>
<td>gi</td>
<td>11118642</td>
<td>106</td>
<td>100</td>
<td>9</td>
<td>139.51/6.92</td>
<td>Vitellogenin 3</td>
</tr>
<tr>
<td>25</td>
<td>gi</td>
<td>166795887</td>
<td>288</td>
<td>100</td>
<td>16</td>
<td>149.45/6.88</td>
<td>Vitellogenin 1</td>
</tr>
<tr>
<td>27</td>
<td>gi</td>
<td>166795887</td>
<td>546</td>
<td>100</td>
<td>18</td>
<td>149.45/6.88</td>
<td>Vitellogenin 1</td>
</tr>
<tr>
<td>29</td>
<td>gi</td>
<td>166795887</td>
<td>107</td>
<td>100</td>
<td>11</td>
<td>149.45/6.88</td>
<td>Vitellogenin 1</td>
</tr>
<tr>
<td>30</td>
<td>gi</td>
<td>166795887</td>
<td>75</td>
<td>99.62</td>
<td>11</td>
<td>149.45/6.88</td>
<td>Vitellogenin 1</td>
</tr>
<tr>
<td>39</td>
<td>gi</td>
<td>166795887</td>
<td>72</td>
<td>99.29</td>
<td>11</td>
<td>149.45/6.88</td>
<td>Vitellogenin 1</td>
</tr>
<tr>
<td>Protein degradation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>gi</td>
<td>457093356</td>
<td>55</td>
<td>96.12</td>
<td>12</td>
<td>55.98/8.16</td>
<td>Sbcb283 protein</td>
</tr>
<tr>
<td>16</td>
<td>gi</td>
<td>47085817</td>
<td>165</td>
<td>100</td>
<td>11</td>
<td>37.57/5.11</td>
<td>Ubiquitin carboxyl-terminal hydrolase L5</td>
</tr>
<tr>
<td>18</td>
<td>gi</td>
<td>41393111</td>
<td>160</td>
<td>100</td>
<td>5</td>
<td>24.23/5.10</td>
<td>Ubiquitin carboxyl-terminal esterase L1</td>
</tr>
<tr>
<td>Apoptosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>gi</td>
<td>47938859</td>
<td>220</td>
<td>100</td>
<td>14</td>
<td>27.94/4.78</td>
<td>Ywhai protein</td>
</tr>
<tr>
<td>Translation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>gi</td>
<td>47085971</td>
<td>114</td>
<td>100</td>
<td>3</td>
<td>16.87/5.18</td>
<td>Eukaryotic translation initiation factor 5A</td>
</tr>
</tbody>
</table>

MW: molecular weight. pI: isoelectric point.

Note: variations were calculated as treated/control spot volume ratio and if the result was below 1, it is reported as – control/treated ratio.

⁰ These proteins are newly induced in the treated group.
presented a significant decrease in abundance under toxin treatment. Similarly, the expression of aldehyde dehydrogenase 9A1a was significantly depressed by MCLR. Aldehyde dehydrogenases are known to participate in aldehyde metabolism via oxidizing aldehyde to carboxylic acid (Marchetti et al., 2007). Aldehydes are highly reactive and cytotoxic, and are involved in various physiological processes such as enzyme inactivation, protein modification, and DNA damage (Lindahl, 1992; O’Brien et al., 2005). Moreover, increasing evidence suggests that some aldehyde metabolites (e.g. 3,4-dihydroxymandelaldehyde and 3,4-dihydroxyphenylglycoldehyde) are neurotoxic, and their intraneuronal accumulation has been regarded as one mechanism that might be involved in cell death associated with neurodegenerative conditions, including Parkinson’s disease and Alzheimer’s disease (Mattamal et al., 1995; Burke et al., 2003). Thus, MCLR treatment caused an accumulation of aldehyde via a strong inhibition of aldehyde dehydrogenases and subsequently resulted in oxidative stress (i.e. lipid peroxidation, GSH depletion and reduced antioxidant activity), indicating that MCLR caused neurotoxicity in zebrafish.

MCLR also caused cytoskeletal disruption in the brain, which is consistent with several previous studies (Mezhoud et al., 2008a,b; Malécot et al., 2009; Wang et al., 2010). Desmin is the major muscle-specific intermediate filament protein, and its mutations cause severe forms of myofibrillar myopathy characterized by partial aggregation of extrasarcomeric desmin cytoskeleton and structural disorganization of myofibrils (Kreplak and Bär, 2009). β-actin is a major cytoskeletal protein composed of actin filaments, which are abundant in synaptic areas such as pre-synaptic nerve endings and post-synaptic dendrites (Ratner and Mahler, 1983; Toh et al., 1976), where they exist as a submembranous cytoskeleton and are involved in neurite growth, cell adhesion, synapse formation, and exocytosis of neurotransmitters (Sobue and Kanda, 1989; Asanuma et al., 1993). A study shows that β-actin mRNAs are strikingly decreased in the gerbil brain after transient ischemia, which might be attributable to neuronal death (Asanuma et al., 1993). A decreased β-actin expression might be caused by oxidative stress due to MCLR attack, since actin could be a direct target for oxidative modification (Fiaschi et al., 2006; Lassing et al., 2007). Tubulin folding cofactor B is a ubiquitously expressed tubulin chaperone protein and binds to α-tubulin (Wang et al., 2005), and its substantial accumulation leads to microtubule depolymerization, growth cone retraction, and axonal damage followed by neuronal degeneration (Lopez-Fanarraga et al., 2007). Therefore, the variations of cytoskeletal proteins indicated that MCLR caused cellular damage in the brain due to cytoskeletal disruptions.

Our study demonstrated that MCLR treatment exerted a significant effect on signal transduction. The first affected protein was copine I, which belongs to the copine family, a family of Ca2+-dependent and phospholipid-binding proteins. The copines comprise a pathway for calcium signaling to proteins involved in a wide range of biological activities including growth control, exocytosis, mitosis, apoptosis, gene transcription, and cytoskeleton assembly. Especially, it has been reported that copine I plays a role in regulating the TNF-α signaling pathway (Tomsig et al., 2004). VAT-1, which was first described in the electric organs of the Pacific electric ray *Torpedo californica*, is a vital component of synaptic vesicle formation (Llinás et al., 1989) and therefore involved in nerve function and communication. The heterotrimeric guanine nucleotide binding protein (G protein) is composed of three subunits, Gα, Gβ and Gγ, and each of them has many isoforms (Cabrera-Vera et al., 2003). Gβ2 (guanine nucleotide binding protein, beta polypeptide 2) is widely expressed throughout the brain (Betty et al., 1998). A study demonstrates that Gβ2 directly interacts with neuropathy target esterase (NTE), and the silence of Gβ2 inhibits the activity of NTE (Chen et al., 2007). The specific deletion of NTE could cause neurodegeneration in animals (Akassoglou et al., 2004; Muhligh-Versen et al., 2005). The phosphatidylinositol-4,5-bisphosphate binding protein (PIBP) is known to be a Raf kinase inhibitor protein and it mainly functions as a direct negative regulator of signaling kinase such as mitogen-activated protein kinase (MAPK), G protein-coupled receptor kinase, nuclear factor kappa B signaling cascades, and also serine proteases (Yeung et al., 1999). Overall, the toxin-induced deregulation in signal transduction was supposed to be an indirect evidence of neurotoxicity in the zebrafish brain due to MCLR attack.

The most interesting finding of this study is that MCLR enhanced the expression of PP2Cζ2. The PP activity also increased with an increasing MCLR concentration in our study, which was inconsistent with previous studies (Guzman et al., 2003; Malbruck et al., 2003, 2004). Guzman et al. (2003) show that a lethal dose of MCLR profoundly inhibits PP activity in the nuclear compartment. Nevertheless, our previous work on the zebrafish liver demonstrates an increased hepatic PP activity under MCLR treatment (Wang et al., 2010). Additionally, a previous study shows that MCLR can up-regulate the expression of the PP2A A subunit in human amniotic epithelial cells (Fu et al., 2009). In this study, an upregulation of PP2Cζ2 might be responsible for an increased PP activity in the treated brain. The highly conserved PP2C family is one of four major groups of serine/threonine PPs in eukaryotes (Cohen, 1989), and it is involved in various cellular events and signaling pathways. For example, an overexpression of PP2Cζ leads to G2/M cell cycle arrest and apoptosis through activation of the p53 protein kinase pathway (Olek et al., 2003). Also, PP2Cζ is involved in the regulation of AMP-activated protein kinase (AMPK) (Moore et al., 1991) and the stress-activated protein kinase pathway (Hanada et al., 1998, 2001). Thus, an overexpression of PP2Cζ2 might affect the protein kinase signaling pathway (e.g. MAPK and AMPK), which should deepen our understanding about the toxicological mechanism of MCLR. Alternatively, the increased expression of PP2Cζ2 might merely be a compensatory effect of the cells in fighting against toxin attack, which really deserves further investigation.

Our study showed that several proteins involved in transporting were affected by MCLR. Transferrin is one of the major serum proteins in eukaryotes and plays a crucial role in iron metabolism by binding and transporting iron, thus making it unavailable for catalysis of superoxide radical formation via Fenton reactions (Neves et al., 2009). A depressed transferrin abundance in this study might be correlated with the toxin-induced oxidative stress, for its decrease making iron available for catalysis of the superoxide radical formation. The voltage-dependent anion channel (VDAC) is instrumental in the release of calcium, cytochrome c and apoptosis inducing factor from the mitochondria inner membrane space, thus enabling the mitochondria to control cell death (Crompton, 1999; Tsujimoto and Shimizu, 2002). The VDAC protein is also a determinant of necrosis (Crompton, 1999). Thus, a decreased VDAC expression could be considered to be aimed at reducing cell death. Interestingly, MCLR induced the expression of vitellogenin 3 and significantly increased the abundance of vitellogenin 1 in zebrafish brains. It should be noted that spots 19, 25, 27, 29, and 30 were identified as the same protein (vitellogenin 1), and these proteins are likely to be protein isoforms. Protein isoforms can arise from alternative mRNA splicing and various post-translational modifications, such as cleavage, phosphorylation, acetylation, and glycosylation. Although vitellogenin (Vg) is mostly distributed in fish liver, it could be expressed in other tissues (e.g. heart and brain) (Ma et al., 2009). Considering that Vg induction is used as a biomarker of exposure of fish to estrogen-active substances (Andersen et al., 2006), we speculated that MCLR might mimic the effects of estrogen disrupting chemicals (EDCs), due to this toxin treatment significantly increasing Vg expression. In fact, the estrogenic activity...
of this toxin has recently been exemplified by a study which clearly indicates that MCLR presents estrogenic potential likely by indirect interaction with estrogen receptors (Oziol and Bouaïcha, 2010).

Meanwhile, MCLR treatment affected protein degradation in zebrafish brains. Sb:cb283 protein with aminopeptidase activity is involved in proteolysis. Then, MCLR affected proteolysis in organism, which is consistent with our previous study (Wang et al., 2010). Ubiquitin carboxyl-terminal hydrolase L5 and ubiquitin carboxyl-terminal esterase L1 are involved in the ubiquitin proteasome system, a cellular pathway responsible for the degradation of misfolded and damaged proteins (Ciechanover and Brundin, 2003). These proteins may collaborate to affect the turnover of cellular proteins (e.g. misfolded and damaged proteins) when cells were stressed by MCLR. Therefore, our study presented a new clue to understanding the molecular mechanisms underlying MCLR-induced cellular responses.

Brain metabolism is known to be disturbed by MCLR treatment. NADH [ubiquinone] dehydrogenase 1 alpha subcomplex subunit 10 (NDUFA10) is a subunit of NADH ubiquinone oxidoreductase (complex I of the respiratory chain, Talpade et al., 2000), and is involved in energy metabolism. Recent studies suggest that complex I is a potent source of ROS (Murphy, 2009), and the decrease of NDUFA10 abundance might decrease energy production from the respiratory chain, however, concomitantly releasing the brain from oxidative attack via decreasing ROS production. Propionyl-CoA carboxylase is involved in the catabolism of essential amino acids, odd-chain fatty acids, and side chains of cholesterol (Muro et al., 2004). Thus, the increase of eIF5A abundance indicated that MCLR could cause apoptosis in the brain, since toxin treatment resulted in a toxin-inducing apoptosis in the treated brain. MCLR might cause a dysfunction in the zebrafish brain via disturbing energy generation and organic acid metabolism.

5. Conclusions

Our study provided a new insight into MCLR neurotoxicity in zebrafish brains at the proteomic level. The proteomic analysis...
revealed that MCLR neurotoxicity induced oxidative stress, and a dysfunction of cytoskeletal assembly and macromolecule metabolism, with a concomitant interference with signal transduction and other functions (e.g. protein degradation, transport, apoptosis and translation), suggesting that MCLR toxicity to the zebrafish brain was complex and diverse (Fig. 3). Also, the PP activity in the brain was enhanced with an increasing MCLR concentration, and this was partly exemplified by an overexpression of PP2Cα2 under toxic treatment. Thus, our study firstly demonstrated that the chronic neurotoxicity of MCLR might initiate the PP pathway via an upregulation of PP2C in the zebrafish brain, in addition to the ROS pathway. In addition an increased Vg expression in the treated group was partly exemplified by an overexpression of PP2C in brain tissue. From this study, it should be noted that the responses in brain were different from liver in our earlier study (Wang et al., 2010), i.e. MCLR specifically affected transport, protein degradation, apoptosis and translation in zebrafish brains. Moreover, even though the affected cellular processes were overlapped in general functional categories (e.g. metabolism, cytoskeletal assembly, oxidative stress and signal transduction), none of the proteins in the functional category in brain was the same as that from liver.

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 40806051), the State Key Laboratory of Marine Environmental Science, and the Program for New Century Excellent Talents in University to Prof. D.-Z. Wang. The authors thank Prof. John Hodgkiss for helping to revise the manuscript.

References

