"Classic" papers recommended for trainees (April 28, 2018)

(***Click the links to download)

Metal marine biogeochemistry & Metal isotopes (Lecture: Edward Boyle)

1.         Measures, C.I. and Edmond, J.M. (1982). Beryllium in the water column of the central North Pacific. Nature, 297, 51-53.

2.         Moore, R.M. and Burton, J.D. (1976). Concentrations of dissolved copper in the eastern Atlantic Ocean 23°N to 47°N. Nature, 264, 241-243.

3.         Measures, C.I. and Burton, J.D. (1980). The vertical distribution and oxidation states of dissolved selenium in the Northeast Atlantic Ocean and their relationship to biological processes. Earth and Planetary Science Letters, 46, 385-396.

4.         Martin, J.H., Fitzwater, S.E., Gordon, R.M., Hunter, C.N., and Tanner, S.J. (1993). Iron, primary production and carbon –nitrogen flux studies during the JGOFS North Atlantic Bloom Experiment. Deep Sea Research Part II Topical Studies in Oceanography, 40, 115-134.

5.         Martin, J.H. and Fitzwater, S.E. (1988). Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, 331, 341-343.

6.         Jeandel, C. and Minster, J.F. (1987). Chromium behavior in the ocean: global versus regional processes, Global Biogeochemical Cycles, 1, 131-154.

7.         Hydes, D.J. (1979).  Aluminum in seawater: control by inorganic processes. Science, 205, 1260-1262.

8.         Elderfield, H. and Greaves, M.J. (1982). The rare earth elements in seawater. Nature, 296, 214-219.

9.         Chan, L.H., Edmond, J.M., Stallard, R.F., Broecker, W.S., Chung, Y.C., Weiss, R.F., Ku, T.L. (1976). Radium and Barium at Geosecs stations in the Atlantic and Pacific. Earth and Planetary Science Letters, 32, 258-267.

10.     Bruland, K.W., Orians, K.J. and Cowen, J.P. (1994). Reactive trace metals in the stratified central North Pacific, Geochimica et Cosmochimica Acta, 58, 3171-3182.

11.     Bruland, K.W. (1980). Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science Letters, 47, 176-198.

12.     Boyle, E.A., Sclater, F.R., and Edmond, J.M. (1977). The distribution of dissolved copper in the Pacific. Earth and Planetary Science Letters, 37, 38-54.

13.     Schaule, B.K. and Patterson, C.C. (1981). Lead concentrations in the northeast Pacific: evidence for global anthropogenic perturbations. Earth and Planetary Science Letters, 54, 97-116.

14.     Murray, J.W., Spell, B., and Paul, B. (1983). The contrasting geochemistry of manganese and chromium in the eastern tropical Pacific Ocean, in “Trace Metals in Seawater” eds. Wong, C.S. et al. vol. 9, Springer NATO conference series pl 643-669.

15.     Boyle, E.A, Chapnick, S.D., Shen, G.T., and Bacon, M.P. (1986). Temporal variability of lead in the western North Atlantic. Journal of Geophysical Research, 91, 8573-8593.

16.     Boyle, E.A. and Edmond, J.M. (1975). Copper in surface waters south of New Zealand. Nature, 253, 107-109.

17.     Klinkhammer, G.P. and Bender, M.P. (1980). The distribution of manganese in the Pacific Ocean. Earth and Planetary Science Letters, 46, 361-384.


Non-traditional analysis of non-traditional stable isotopes (Lecturer: Xinyuan Zheng)

1.         Albarede, F., and Beard, B. (2004). Analytical methods for nontraditional isotopes. Reviews in Mineralogy and Geochemistry, 55(1), 113-152.

2.         Chaussidon, M., Deng, Z., Villeneuve, J., Moureau, J., Watson, B., and Richter, F., et al. (2017). In situ analysis of non-traditional isotopes by SIMS and LA–MC–ICP–MS: key aspects and the example of mg isotopes in olivines and silicate glasses. Reviews in Mineralogy and Geochemistry, 82(1), 127-163.

3.         Poitrasson, F., and D'Abzac, F. (2017). Femtosecond laser ablation inductively coupled plasma source mass spectrometry for elemental and isotopic analysis: are ultrafast lasers worthwhile? Journal of Analytical Atomic Spectrometry, 32(6), 1075.

4.         Tanner, S.D., Baranov, V.I., and Bandura, D. R. (2002). Reaction cells and collision cells for icp-ms: a tutorial review. Spectrochimica Acta Part B Atomic Spectroscopy, 57(9), 1361-1452.

5.         Zheng, X.Y., Beard, B.L., Lee, S., Reddy, T.R., Xu, H., and Johnson, C.M. (2017). Contrasting particle size distributions and Fe isotope fractionations during nanosecond and femtosecond laser ablation of Fe minerals: implications for LA–MC–ICP–MS analysis of stable isotopes. Chemical Geology, 450, 235-247.


Trace metal-phytoplankton interactions (Lecturer: Bill Sunda)

1.         Sunda, W.G. (2012). Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Frontiers in Microbiology, 3, doi:10.3389/fmicb.2012.00204.

2.         Sunda, W.G., and Huntsman, S.A. (1997). Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, 390, 389-392.

3.         Sunda, W.G., and Huntsman, S.A. (1995). Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnology and Oceanography, 40(8), 1404-1417.

4.         Sunda, W.G., and Huntsman, S.A. (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 50(50), 189-206.


Electrochemistry (Lecturer: George Luther)

Metal Complexation Papers

Overview paper on metal-ligand thermodynamic and conditional constants

1.         Luther, III. G.W., Rozan, T.F., Witter, A., and Lewis, B. (2001). Metal–organic complexation in the marine environment. Geochemical Transactions (Electronic Journal), 9, doi:10.1186/1467-4866-2-65.

Overview papers on conditional constants ONLY

1.         Pižeta, I., Sander, S.G., Hudson, R.J.M., Omanovic, D., Baars, O., Barbeau, K.A., et al. (2015). Interpretation of complexometric titration data: an intercomparison of methods for estimating models of trace metal complexation by natural organic ligands. Marine Chemistry, 173(9), 3-24.

2.         Omanović, D., Garnier, C., and Pižeta, I. (2015). Promcc: an all-in-one tool for trace metal complexation studies. Marine Chemistry, 173, 25-39.

3.         Ružić I. (1982) Theoretical aspects of the direct titration of natural waters and its information yield for trace metal speciation. Analytica Chimica Acta, 140, 99-113.

4.         Bruland, K.W. (1989). Complexation of zinc by natural ligands in the central North Pacific. Limnology & Oceanography, 34, 269-285.

5.         Rue, E.L. and Bruland, K.W. (1995). Complexation of iorn (II) by natural ligands in the central Norht Pacific as determined by a new competitive ligand / adsorptive cathodic stripping voltammetric method. Marine Chemistry, 50, 117-138.

6.         Van den Berg, C.M.G. (1995). Evidence for organic complexation is seawater. Marine Chemistry, 50, 139-157.

7.         Wu, J. and Luther III, G. W.  (1995). Complexation of iron (III) by natural organic ligands in the Northwest Atlantic Ocean by a competitive ligand equilibration method and a kinetic approach. Marine Chemistry, 50, 159-177.

Specific papers on metal-ligand thermodynamic constants (Zn, Cu, Cd, Pb uses pseudovoltammetry for nM concentrations)

1.         Taylor, S.W., Luther, III. G.W., and Waite, J.H. (1994). Polarographic and spectrophotometric investigation of iron (III) complexation to 3,4-dihydroxyphenylalanine-containing peptides and proteins from Mytilus Edulis. Inorganic Chemistry, 33(25), 5819-5824.

2.         Lewis, B.L., Holt, P.D., Taylor, S.W., and Wilhelm, S.W. (1995). Voltammetric estimation of iron (III) thermodynamic stability constants for catecholate siderophores isolated from marine bacteria and cyanobacteria. Marine Chemistry, 50, 179-188.

3.         Lewis, B.L., Luther, III. G.W., Lane, H., and Church, T.M. (1995). Determination of Metal-Organic Complexation in Natural Waters by SWASV with Pseudopolarograms. Electroanalysis, 7, 166-177. ZnL

4.         Croot, P.L., Moffett, J.W., Luther, III G.W. (1999). Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Marine Chemistry, 67, 219-232. CuL

5.         Rozan, T.F., Luther, III G.W., Ridge, D., Robinson, S. (2003). Determination of Pb complexation in oxic and sulfidic waters using Pseudovoltammetry. Environmental Science and Technology, 37, 3845-3852. PbL

6.         Tsang, J.T., Rozan, T.F., Hsu-Kim, H., Mullaugh, K.M. and Luther, III. G.W. (2006). Pseudopolarographic determination of Cd2+ complexation in freshwater. Environmental Science Technology, 40, 5395-5401. CdL


Paper on kinetics and conditional constants of Fe (III)-ligand complexes

1.         Witter, A.E., Hutchins, D.A., Butler, A. and Luther, III. G.W. (2000). Determination of conditional stability constants and kinetic constants for strong Fe-binding ligands in seawater, Marine Chemistry, 69, 1-17.

Redox chemistry and solid state (micro) electrodes

1.         Brendel, P.J. and Luther, III. G.W. (1995). Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2 and S (-II) in porewaters of marine and freshwater sediments. Environmental Science and Technology, 29, 751-761.

2.         Luther, III. G.W., Glazer, B. T., Ma, S., Trouwborst, R. E., Moore, T. S., and Metzger, E., et al. (2008) Use of voltammetric solid-state (micro)electrodes for studying biogeochemical processes: laboratory measurements to real time measurements with an in situ electrochemical analyzer (ISEA). Marine Chemistry, 108(3), 221-235.

3.         Cai, W. J., Zhao, P., Wang, Y., Theberge, S. M., Witter, A., Luther, III, G. W. (2002). Porewater redox species, pH and pCO2 in aquatic sediments. IN: Environmental Electrochemistry: Analyses of Trace Element Biogeochemistry (Taillefert, M.; Rozan, T., Eds.). American Chemical Society Symposium Series; American Chemical Society: Washington, D. C., Ch. 10, Vol. 811, pp. 188–209.

4.         Luther, III, G. W., Reimers, C. E., Nuzzio, D. B. and Lovalvo, D. (1999). In Situ deployment of voltammetric, potentiometric and amperometric microelectrodes from a ROV to determine O2, Mn, Fe, S (-2) and pH in porewaters. Environmental Science and Technology, 33, 4352-4356.


Trace metal bioavailability in an acidifying ocean (Lecture: Dalin Shi)

1.         Breitbarth, E., Bellerby, R.J., Neill, C.C., Ardelan, M.V., Meyerhöfer, M., and Zöllner, E., et al. (2010). Ocean acidification affects iron speciation during a coastal seawater mesocosm experiment. Biogeosciences, 7(3), 1065-1073.

2.         Kim, J.M., Baars, O., and Fmm, M. (2016). The effect of acidification on the bioavailability and electrochemical lability of zinc in seawater. Philosophical Transactions, 374, 20150296.

3.         Shaked, Y., Kustka, A. B., and Morel, F.M.M. (2005). A general kinetic model for iron acquisition by eukaryotic phytoplankton. Limnology and Oceanography, 50(3), 872-882.

4.         Shi, D., Xu, Y., Hopkinson, B. M., and Morel, F. M. M. (2010). Effect of ocean acidification on iron availability to marine phytoplankton. Science, 327(5966), 676-679.

5.         Xu, Y., Shi, D., Aristilde, L., and Morel, F.M.M. (2012). The effect of pH on the uptake of zinc and cadmium in marine phytoplankton: possible role of weak complexes. Limnology & Oceanography, 57(1), 293–304.