Holocene East Asian monsoon variability: Links to solar and tropical Pacific forcing

Kandasamy Selvaraj,¹ Chen Tung Arthur Chen,¹ and Jiann-Yuh Lou²

Received 18 September 2006; revised 20 November 2006; accepted 22 November 2006; published 3 January 2007.

[1] Sedimentary geochemical records from subalpine Retreat Lake, subtropical Taiwan, document the unstable East Asian monsoon (EAM) climate over the past ∼10,300 years, with a weak EAM between ∼10.3 and 8.6 ky B.P., EAM intensity peaks between 8.6 and 7.7 ky B.P., and then gradually decrease in response to summer insolation, heat and moisture transport. Our proxy record reveals several weak monsoon intervals that correlate to low sea surface temperatures in the western tropical Pacific and cold events in the North Atlantic, linking the tropical Pacific, North Atlantic, and Polar climates because weak EAM events at ∼8.2, 5.4 and 4.5–2.1 ky B.P. also correspond to low values of atmospheric methane and periods of reduced North Atlantic Deep Water formation. We therefore suggest that centennial to millennial scale monsoon variability during the Holocene in the northern subtropics is globally-mediated via a sun-ocean-monsoon-North Atlantic linkage. Citation: Selvaraj, K., C. T. A. Chen, and J.-Y. Lou (2007), Holocene East Asian monsoon variability: Links to solar and tropical Pacific forcing, Geophys. Res. Lett., 34, L01703, doi:10.1029/2006GL028155.

1. Introduction

[2] Marine sedimentary records from the North Atlantic demonstrate that the Holocene was interrupted by a series of quasi-periodic (∼1000–1500 yr) cold, dry events [deMenocal et al., 2000a; Bond et al., 2001]. Such climate instabilities are also apparent in high-resolution marine [Gupta et al., 2005] and speleothem-based Asian monsoon (AM) records [Fleitmann et al., 2003; Wang et al., 2005], suggesting that centennial to millennial scale monsoon events were caused by solar and glacial boundary forcing. High-resolution records from the tropical Pacific [Lea et al., 2000; Stott et al., 2004] show evidence for internal forcing on decadal to millennial scale monsoon variability though the importance of internal forcing remains ambiguous [Wang et al., 2005]. This warrants additional data to evaluate the combined sun-monsoon link and the role of tropical climate dynamics on a global scale, especially within the AM system. One ideal location for such study is the subtropical East Asian island of Taiwan, well known for its vigorous tropical and extra-tropical land-ocean-atmosphere interactions.

[3] Taiwan’s weather and climate are primarily controlled by the East Asian monsoon (EAM). The EAM is the result of thermal contrast between the Asian landmass and the tropical Pacific with an additional thermal and dynamic trigger of the Tibetan Plateau [An, 2000]. The EAM is extremely important because it regulates global atmospheric circulation through heat and moisture transport from the warmest part of the tropical ocean, the West Pacific Warm Pool (WPWP), to higher latitudes [Wang et al., 2001]. Since Taiwan has the world’s highest physical weathering rate (1365 mg/cm²/yr) [Li, 1976], terrestrial vegetation and weathering are highly dependent on the intensity of the EAM. Here we report the results of geochemical analyses (for further details, see auxiliary material¹) performed on sediments from a small (10⁴ m²), hydrologically closed, subalpine Retreat Lake (24°29′30″N, 121°26′15″E; 2230 m) in NE Taiwan. The lake lies directly in the path of the moisture-laden, southeasterly down-winds of the EAM from the western tropical Pacific (WTP), and close to the main axis of the Kuroshio Current, a major boundary current that transports a large volume (18–25 Sverdrup = 10⁶ m³ s⁻¹) of warm, salty seawater from the WTP to the North Pacific. The modern lake catchments have two different seasons: a warm, wet season during Northern Hemisphere (NH) summer when the intertropical convergence zone (ITCZ) shifts northward (Figure 1s) and EAM reaches its maximum and a cool, dry season during the boreal winter when the Siberian high establishes a strong anticyclone on the Tibetan Plateau and ITCZ migrates to a southern position that is associated with the stronger winter monsoon. The lake is surrounded by ∼60 m high mountains comprised of Tertiary metamorphic rocks (slate, phyllite and argillite). Lake level is primarily controlled by precipitation and evaporation as there are no in- and out-flow. The combination of mild mean annual temperature (12°C) and high precipitation (∼3000 mm) results in thick vegetation in the catchments of Retreat Lake.

2. Materials, Methods, and Proxies

[4] Total organic carbon (TOC), total nitrogen and magnetic susceptibility (MS) were measured in 1.7 m long sediment core collected from the lake that was continuously sub-sampled at 1 cm interval, which is equivalent to a temporal resolution of 45 years. Selected major and trace elements were analyzed from samples of coarse intervals (2–4 cm) to provide additional constraints of EAM variability on subtropical weathering. Chronology is based on 8 accelerator mass spectrometry (AMS) and 2 conventional ¹⁴C dates of bulk organic matter (Table S1), all uncorrected dates (see auxiliary material and Figure S2) converted to

¹Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan.
²Department of Marine Science, Naval Academy, Kaohsiung, Taiwan.

Copyright 2007 by the American Geophysical Union.
0094-8276/07/2006GL028155. Other auxiliary material files are in the HTML.
3. Results and Discussion

[5] The geochemical records for Retreat Lake (Figure 1), consistent with sediment lithology (auxiliary Figure S2), show three distinct climatic episodes. First, a cold, dry period with low precipitation between ca. 10.3 and 8.6 ky B.P. is indicated by low TOC and low C/N ratios. This interpretation is substantiated by high values of MS and CIA, and the high Rb/Sr but lower K/Rb ratios. A driest interval at ~4.5 to 2.1 ky B.P. is indicated by acute starvation of organic-inorganic materials input into the lake, suggesting a significant drop, perhaps failure, in EAM precipitation which probably brought the lake into a desiccation stage; an inference very consistent with an arid period (~4.4–2.1 ky B.P.) shown in speleothem δ18O record from central China [Shao et al., 2006]. Typical lacustrine detrital records such as those for Ti, Zr, and Ti-based detrital percentage, and molar SiO2/Al2O3 - a grain size proxy, all (auxiliary Figure S3) corroborate the above inferred EAM fluctuations.

[6] EAM variability is influenced by different factors, whereas NH summer insolation, the oceanographic characteristics of the WPWP, the strength of the North Equatorial Current (NEC) in the western Pacific, and the El Niño–Southern Oscillation (ENSO) in the tropical Pacific are the most important ones. In subtropical Taiwan, the rapid increase and peak EAM precipitation between ~8.6 and 7.7 ky B.P. (Figures 1 and 2a) indicate a rapid northward migration of the ITCZ and is in phase with time lag of ~2.4 ky to the NH summer insolation anomaly at 11–12 ky B.P. [Berger and Loutre, 1991]. During this interval, a marked change from organic-poor to -rich, peaty sediments and a concomitant negative excursion of δ13C values (from ~27‰ to ~30.6‰) (Figure 1b) indicating the sudden expansion of C3 biomass favoring warm, humid conditions. This increase in EAM intensity in subtropical Taiwan is consistent with the onset of climatic optimum in the Loess Plateau [An et al., 2000] and corresponds to the highest growth rate (as high as 500 μm/yr) between 8.5 and 7.5 ky B.P. in Chinese stalagmite [Dykosi et al., 2005]. The strong, negative relationship between TOC record, an
ideal proxy for EAM variations, and summer (JJA) insolation evident between \(-10.3 \) and 8.6 ky B.P. (Figure 2a) reveals that the EAM intensity during the early Holocene was largely controlled by glacial boundary forcing (e.g., Tibetan Plateau snow cover and North Atlantic SSTs). Although decadal to centennial variations in Indian Ocean monsoon (IOM) precipitation between \(-10.3 \) and 8 ky B.P. indicates an analogous relationship with Greenland temperatures [Fleitmann et al., 2003], the delayed strengthening of EAM in Taiwan could also be related to the tropical Pacific SSTs which attained its Holocene average at \(-8.5 \) ky B.P. in the WPWP, where EAM prevails [Gagan et al., 2004]. This, however, contradicts speleothem- [e.g., Dykoski et al., 2005] and pollen-based [Liew et al., 2006] monsoon reconstructions which all show evidence for an enhanced monsoon during the early Holocene.

Nevertheless, our EAM record shows a strong visible coincidence with insolation from 8.6 ky B.P. onward (Figure 2a), indicating that long-term changes in EAM intensity depend on summer insolation. Importantly, the gradual long-term decrease in monsoon precipitation in subtropical Taiwan resembles speleothem-based AM [Wang et al., 2005], IOM [Fleitmann et al., 2003] records from China and Oman, faunal-based southwest AM record from the Arabian Sea [Gupta et al., 2005], and sedimentary bulk Ti record from the Cariaco Basin, tropical Atlantic [Haug et al., 2001] (Figure 2). Accordingly, during the “Holocene optimum”, our TOC record, consistent with the Ti record of the Cariaco Basin, shows increased precipitation and thus supports a more northerly mean position of the Pacific ITCZ. Conversely, during the late Holocene, the southward migration of ITCZ owing to less seasonal NH insolation would have reduced the strength of summer monsoon in Taiwan as well as the entire northern subtropics. Equally important, this low-latitude, wide monsoon similarity indicates that the broad temporal pattern of postglacial to modern precipitation in the subtropics are controlled, probably on a global scale, by the continuous southward migration of the mean summer ITCZ and a gradual weakening of the monsoon intensity in response to orbitally-induced declining summer insolation; an interpretation consistent with modeling study [Kutzbach and Otto-Bliesner, 1982].

After 8.6 ky B.P., the long-term monsoon trend is punctuated by eight discrete intervals of weak EAM (low TOC values; vertical grey bars in Figure 2) that, within dating error, can be correlated with other monsoon records and the low values of faunal Mg/Ca-derived SST record from the WTP [Stott et al., 2004] (Figure 2f), indicating the influence of tropical SSTs on the EAM and, in turn, the low-latitude monsoon patterns. Among these intervals, 6 coincide to the timings of millennial-scale events (cold spells numbered 0–5; Figure 2g) in the North Atlantic [Bond et al., 2001] (plotted such that cooling and monsoon weakening are downward), suggesting the influence of variable solar activity on the EAM. Three weak EAM events of relatively longer in duration and larger in amplitude at around 8.3–8, 5.7–5.1 and 4.5– 2.1 ky B.P can be correlated to the low values of atmospheric CH\(_4\) recorded in the GRIP ice core, central Greenland [Blunier et al., 1995] (Figure 3). Furthermore, these events coincide with reduced formation of North Atlantic Deep Water (NADW).
as demonstrated by $\delta^{13}C$ values of benthic foraminifera, *Cibicidoides wuellerstorfi*, an established proxy for deep water variability (Figure 3), from the sediments of the subpolar northeastern Atlantic [Oppo et al., 2003]. These high-latitude cooling-reduced NADW formation and low tropical SSTs-weak EAM couples suggest that the reduced heat and moisture export during these times may reduce the global wetlands and contributed to decreased atmospheric methane, exactly as noted [Blunier et al., 1995; Alley et al., 1997]. The event centered at ~8.17 ky B.P. closely correlates with the ‘8.2 ky event’ recorded in Greenland ice cores [e.g., Alley et al., 1997], probably related to a catastrophic outburst of freshwater from ice-margin lakes to Hudson Bay. A prominent, weak EAM related to a catastrophic outburst of freshwater from ice-core [e.g., 2000] and the South China Sea [e.g., Wang et al., 1999], and in the synchronous drop in SSTs ~5–3 ky B.P. in the latter area. The decrease in the depth of the thermocline around 4.3–2.5 ky B.P. in the Okinawa Trough further reveals the relaxation of trade winds throughout the Pacific and thus a weakened NEC and Kuroshio. Eventually, weak EAM events closely correspond to periods (~0.6, 1.7, 3.3, 4.6, 5.9, and 8.1 ky B.P.) of weakened Kuroshio found in the Okinawa Trough and periodicities (~1500 and 700–800 yr) of Kuroshio proxies [Jian et al., 2000] circuitously indicate a climatic forcing by changes in oceanic thermohaline circulation, including its subharmonic mode, on EAM variation.

[10] The climate of the WPWP is fundamentally linked to ENSO variability with relative drought and reduced SSTs, as seen in Figure 2f, characterizing the El Niño phase [Tudhope et al., 2001]. Since modern AM failures and ENSO have a strong correlation [Charles et al., 1997], the drastic reduction in EAM strength and the lake desiccation were indeed a response to ENSO in the late Holocene as indicated by the increased vegetation loss across the Pacific Basin, Kalimantan, and Australia as well as composite records of charcoal abundance adjacent to the WPWP, Papua New Guinea and Indonesia; all show a high frequency of ENSO activities between 5 and 2 ky B.P. (for further details, see Gagan et al. [2004]). The enhanced run-off variability in the Ti record of the Cariaco Basin between 3.8 and 2.8 ky B.P. indicates a mean southward shift in the position of the Pacific ITCZ linked to ENSO changes in the late Holocene [Haug et al., 2001] (Figure 2e). ENSO model studies [e.g., Liu et al., 2000] and coral records [e.g., Gagan et al., 2004] display the greatest ENSO variability ca. 3.5–1.7 ky B.P. This seems to be correlated with the lowest content of TOC and C/N ratio ca. 2.0–1.6 ky B.P. in sediments of Retreat Lake and highest $\delta^{13}C$ values of stalagmites (grey bar 1 in Figure 2), indicative of weak AM signals. The Oman stalagmite shows a hiatus in precipitation between 2.7 and 1.4 ky B.P. (Figure 2c), further supporting the influence of the Indo-Pacific Warm Pool on variations in the IOM via the Indonesian Throughflow as well as EAM. Strong supports for the role of ocean-atmosphere interactions in monsoon variability come from an analogous pattern of heat transport in the North Atlantic [e.g., Poore et al., 2003] and numerous

Figure 3. Weak EAM intervals. (a) Retreat Lake’s TOC record, (b) Holocene methane (CH$_4$) record from GRIP ice core [Blunier et al., 1995] and benthic foraminifer’s $\delta^{13}C$ record from ODP site 980 [Oppo et al., 2003]. Grey bars indicate larger amplitude weak EAM intervals.
lacustrine records of late Holocene-ENSO link in the American-side Pacific [e.g., Moy et al., 2002].

4. Conclusions

[11] Retreat Lake geochemical records invariably show an abrupt increase of EAM intensity at ~8.6 ky B.P. and since then the long-term EAM variations, similar to other AM records, were primarily controlled by the mean position of the ITCZ, which affected directly by summer insolation and indirectly through its effect on the tropical Pacific SSTs, and related meridional heat and moisture transport. The centennial to multi-decadal weak EAM intervals and their link with both the cold events in the North Atlantic and low SSTs in the tropical Pacific were at least in part ascribed to changes in solar forcing. An important observation of our study is that since ~5 ky B.P. the EAM, including IOM, variations seem to be affected by non-linear onset of ENSO due probably to the enhanced interaction between the Southern Oscillation and southward Pacific ITCZ. Our study underscores the importance of additional, high-resolution climate records in subtropical Taiwan and along the path of the Kuroshio Current so as to establish more precise land-sea correlation and to strengthen the monsoon-tropical Pacific-ENSO linkage.

[12] Acknowledgments. This study was supported by the National Science Council of Taiwan (NSC-94-2621-Z-110-001 and 94-2611-M110-001). Two anonymous reviewers are thanked for their comments on an earlier draft of this manuscript.

References

Li, Y. H. (1976), Denudation of Taiwan island since the Pliocene epoch, Geology, 4, 105–107.

C. T. A. Chen and K. Selvaraj, Institute of Marine Geology and Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan. (kselva8@yahoo.com)
J.-Y. Lou, Department of Marine Science, Naval Academy, P.O. Box 90175, Tsoying, Kaohsiung, Taiwan.